There, I've done it again. I came across some figure in the passing and ended up digging out the original reference in an attempt to make sense of it. In this case the figure is the energy-time-information triangle, proposed by Daniel Spreng in 1978, also known as Spreng's triangle. It supposedly conveys the message that new information technology (whatever that was in 1978) allows to save either time or energy, or a combination thereof. Clearly, I thought, the paper was written before the dawn of Wikipedia...
Spreng has a background that is noteworthy. Trained as a physicist, he later worked as engineer and developed an interest in economics. His triangle is an attempt to connect these areas, and as such very interesting. The example he starts with is purely thermodynamical. A reversible process, without loss of energy, would take an infinite amount of time. Any faster, and the process becomes irreversible. The faster it is, the more energy is needed (at least in the examples Spreng discusses). So there is a trade-off between time and energy that carries over to manufacturing. Information then comes in as an improved technology that makes the process more efficient, and so, more information saves time or energy. That is the basic idea.
Spreng's original paper is
here, but I couldn't get access to it, so I settled for the
1993 remake and the following is my summary.
You can find the original version of Spreng's triangle on page 13 of this file. I've redrawn it for your convenience, click to enlarge.
Spreng's triangle is a plane with 3 axes at 120° to each other. The 3 axes are energy (E), time (T) and information (I) respectively. I have drawn lines with constant time in blue, constant information in red, and constant information in green. In the lower right E=0 corner, that Spreng refers to as the "starving philosopher," one needs no energy, but has an infinite amount of time and all the information in the world. In the lower left, I=0, corner, that Spreng refers to as the "primitive man," one has no information and needs an infinite time to get anything done with maximal energy. In the upper corner, the "industrial man," one has plenty of information and energy to get things done in zero time. The corners are however unrealistic limits that shouldn't be taken too seriously, they're just to show the trends if you move around in the diagram.
Now to define a point in a plane you only need two axes, so the relevant statement here would be that all possible points of combinations E,T,I lie in a plane. I say "would be" because I will argue in the following that though superficially plausible and appealing, I don't think it is actually the case.
In his paper, Spreng discusses in which way energy, time, and information partly substitute for each other from several different aspects.
At some point, he claims for example that in industrial countries on a national level working hours substitute for energy use, citing himself in mentioned earlier paper that I had no access to. So I plotted the working time per year per worker
from this table, against the annual energy consumption per capita
from this table (in kilogrammes of oil equivalent per year).
I don't know about you, but I can't see any correlation or anti-correlation in that. Well, the data I used is from 2003, so, possibly 40 years ago that looked different, but I can't say I am very convinced. However, this turns out not to be of much importance later, he just uses this because he wants to send a message that civilization should slow down the hamster wheel (invest time) to instead save energy:
"Whether the time saved is simply used to produce and consume more, or whether some saved time is set aside as time for cultural development is of prime importance."
One easily sees from Spreng's discussion, that the "information" he is referring to is ill-defined. To be fair however, it does become clear that he is talking about manufacturing processes and their improvement. So Wikipedia isn't really a counterexample. At some point he specifies information to mean 'relevant' information, yet one doesn't know relevant for what. Maybe it's the information needed to decrease energy or time, but then the argument becomes circular. I think the name "information" is very misleading. What he seems to mean is something like the complexity of a technological process. Not that this is better defined.
However, just when I was about to throw the paper in the garbage, Spreng goes and admits that the "relevant information" is totally ill-defined and pulls the following trick that helped me to make more sense out of his triangle. He says, let's just consider information as an unknown parameter and assume it is measured by the market: "[T]he market measures the information content of goods and services." So, let Y be the market value of a good or service, then he defines information (I) by the following equation
where L is input to production of the good in working hours, p
L the price per hour, E is the energy input in some units, and p
E the price for that energy unit.
That would indeed define a surface if this equation would be fulfilled, so the question is, does it work? First, we note that this equation almost certainly isn't fulfilled for goods with cultural value like, say,
Marilyn Monroe's dress. I don't see what difference it should make for the right side of the equation whether Marilyn or I wear a dress before auction, yet I have some doubts anybody would pay me some million bucks for that, so it does make a difference for the left side of the equation which is no good.
So then let's look at goods without cultural value, if such exist, maybe a banana will do. Still, something seems to be really funny with this equation. The alleged market value of the good doesn't at all depend on supply and demand for that good. I mean, I don't know a lot about economics, but if you're growing bananas in your backyard with input E,I,L and suddenly all bananas in Brazil fall victim to epidemic monkey obesity, your backyard bananas would be in high demand and up goes Y without any change to the right side of the equation.
This is not to say that it is not possible to make sense out of Spreng's triangle, but at least from what's in his 1993 paper it seems to me it would take more work to integrate this idea with economics. Spreng concludes his paper with the words
The importance of new information technology, NIT, in respect of future energy use can hardly be overstated. However, NIT can do two things. It can be used to substitute time by information or to substitute energy by information. NIT can, in other words, both be used to speed up the pace of life (work and leisure), thus promoting a society of harried mass consumers, or it can be used to conserve precious natural resources (energy and non-energy) by doing things more intelligently and improving the quality of life without adding stress to the environment. It is up to the society as a whole, politics of course included, to decide which of the
two roads are taken.”
You could then summarize my criticism as these are not the only two roads. Your NIT can also cost you more energy
and more time. Like this damned Windows that never seems to finish updating and keeps popping up a message that I have to restart.
Bottomline: Plausible ideas are the most dangerous ones.