Friday, July 28, 2017

New paper claims string theory can be tested with Bose-Einstein-Condensates

Fluorescence image of
Bose-Einstein-Condensate.
Image Credits: Stefan Kuhr and
Immanuel Bloch, MPQ
String theory is infamously detached from experiment. But in a new paper, a group from Mexico put forward a proposal to change that
    String theory phenomenology and quantum many–body systems
    Sergio Gutiérrez, Abel Camacho, Héctor Hernández
    arXiv:1707.07757 [gr-qc]
Ahead, let me be clear they don’t want to test string theory, but the presence of additional dimensions of space, which is a prediction of string theory.

In the paper, the authors calculate how additional space-like dimensions affect a condensate of ultra-cold atoms, known as Bose-Einstein-Condensate. At such low temperatures, the atoms transition to a state where their quantum wave-function acts as one and the system begins to display quantum effects, such as interference, throughout.

In the presence of extra-dimensions, every particle’s wave-function has higher harmonics because the extra-dimensions have to close up, in the simplest case like circles. The particle’s wave-functions have to fit into the extra dimensions, meaning their wave-length must be an integer fraction of the radius.

Each of the additional dimensions has a radius of about a Planck length, which is 10-35m or 15 orders of magnitude smaller than what even the LHC can probe. To excite these higher harmonics, you correspondingly need an energy of 1015 TeV, or 15 orders of magnitude higher than what the LHC can produce.

How do the extra-dimensions of string theory affect the ultra-cold condensate? They don’t. That’s because at those low temperatures there is no way you can excite any of the higher harmonics. Heck, even the total energy of the condensates presently used isn’t high enough. There’s a reason string theory is famously detached from experiment – because it’s a damned high energy you must reach to see stringy effects!

So what’s the proposal in the paper then? There isn’t one. They simply ignore that the higher harmonics can’t be excited and make a calculation. Then they estimate that one needs a condensate of about a thousand particles to measure a discontinuity in the specific heat, which depends on the number of extra-dimensions.

It’s probably correct that this discontinuity depends on the number of extra-dimensions. Unfortunately the authors don’t go back and check what’s the mass per particle in the condensate that’s needed to make this work. I’ve put in the numbers and get something like a million tons. That gigantic mass becomes necessary because it has to combine with the miniscule temperature of about a nano-Kelvin to have a geometric mean that exceeds the Planck mass.

In summary: Sorry, but nobody’s going to test string theory with Bose-Einstein-Condensates.

Wednesday, July 19, 2017

Penrose claims LIGO noise is evidence for Cyclic Cosmology

Noise is the physicists’ biggest enemy. Unless you are a theorist whose pet idea masquerades as noise. Then you are best friends with noise. Like Roger Penrose.
    Correlated "noise" in LIGO gravitational wave signals: an implication of Conformal Cyclic Cosmology
    Roger Penrose
    arXiv:1707.04169 [gr-qc]

Roger Penrose made his name with the Penrose-Hawking theorems and twistor theory. He is also well-known for writing books with very many pages, most recently “Fashion, Faith, and Fantasy in the New Physics of the Universe.”

One man’s noise is another man’s signal.
Penrose doesn’t like most of what’s currently in fashion, but believes that human consciousness can’t be explained by known physics and that the universe is cyclically reborn. This cyclic cosmology, so his recent claim, gives rise to correlations in the LIGO noise – just like what’s been observed.

The LIGO experiment consists of two interferometers in the USA, separated by about 3,000 km. A gravitational wave signal should pass through both detectors with a delay determined by the time it takes the gravitational wave to sweep from one US-coast to the other. This delay is typically of the order of 10ms, but its exact value depends on where the waves came from.

The correlation between the two LIGO detectors is one of the most important criteria used by the collaboration to tell noise from signal. The noise itself, however, isn’t entirely uncorrelated. Some sources of the correlations are known, but some are not. This is not unusual – understanding the detector is as much part of a new experiment as is the measurement itself. The LIGO collaboration, needless to say, thinks everything is under control and the correlations are adequately taken care of in their signal analysis.

A Danish group of researchers begs to differ. They recently published a criticism on the arXiv in which they complain that after subtracting the signal of the first gravitational wave event, correlations remain at the same time-delay as the signal. That clearly shouldn’t happen. First and foremost it would demonstrate a sloppy signal extraction by the LIGO collaboration.

A reply to the Danes’ criticism by Ian Harry from the LIGO collaboration quickly appeared on Sean Carroll’s blog. Ian pointed out some supposed mistakes in the Danish group’s paper. Turns out though, the mistake was on his site. Once corrected, Harry’s analysis reproduces the correlations which shouldn’t be there. Bummer.

Ian Harry did not respond to my requests for comment. Neither did Alessandra Buonanno from the LIGO collaboration, who was also acknowledged by the Danish group. David Shoemaker, the current LIGO spokesperson, let me know he has “full confidence” in the results, and also, the collaboration is working on a reply, which might however take several months to appear. In other words, go away, there’s nothing to see here.

But while we wait for the LIGO response, speculations abound what might cause the supposed correlation. Penrose beat everyone to it with an explanation, even Craig Hogan, who has run his own experiment looking for correlated noise in interferometers, and who I was counting on.

Penrose’s cyclic cosmology works by gluing the big bang together with what we usually think of as the end of the universe – an infinite accelerated expansion into nothingness. Penrose conjectures that both phases – the beginning and the end – are conformally invariant, which means they possess a symmetry under a stretching of distance scales. Then he identifies the end of the universe with the beginning of a new one, creating a cycle that repeats indefinitely. In his theory, what we think of as inflation – the accelerated expansion in the early universe – becomes the final phase of acceleration in the cycle preceding our own.

Problem is, the universe as we presently see it is not conformally invariant. What screws up conformal invariance is that particles have masses, and these masses also set a scale. Hence, Penrose has to assume that eventually all particle masses fade away so that conformal invariance is restored.

There’s another problem. Since Penrose’s conformal cyclic cosmology has no inflation it also lacks a mechanism to create temperature fluctuations in the cosmic microwave background (CMB). Luckily, however, the theory also gives rise to a new scalar particle that couples only gravitationally. Penrose named it  “erebon” after the ancient Greek God of Darkness, Erebos, that gives rise to new phenomenology.

Erebos, the God of Darkness,
according to YouTube.
The erebons have a mass of about 10-5 gram because “what else could it be,” and they have a lifetime determined by the cosmological constant, presumably also because what else could it be. (Aside: Note that these are naturalness arguments.) The erebons make up dark matter and their decay causes gravitational waves that seed the CMB temperature fluctuations.

Since erebons are created at the beginning of each cycle and decay away through it, they also create a gravitational wave background. Penrose then argues that a gravitational wave signal from a binary black hole merger – like the ones LIGO has observed – should be accompanied by noise-like signals from erebons that decayed at the same time in the same galaxy. Just that this noise-like contribution would be correlated with the same time-difference as the merger signal.

In his paper, Penrose does not analyze the details of his proposal. He merely writes:
“Clearly the proposal that I am putting forward here makes many testable predictions, and it should not be hard to disprove it if it is wrong.”
In my impression, this is a sketchy idea and I doubt it will work. I don’t have a major problem with inventing some particle to make up dark matter, but I have a hard time seeing how the decay of a Planck-mass particle can give rise to a signal comparable in strength to a black hole merger (or why several of them would add up exactly for a larger signal).

Even taking this at face value, the decay signals wouldn’t only come from one galaxy but from all galaxies, so the noise should be correlated all over and at pretty much all time-scales – not just at the 12ms as the Danish group has claimed. Worst of all, the dominant part of the signal would come from our own galaxy and why haven’t we seen this already?

In summary, one can’t blame Penrose for being fashionable. But I don’t think that erebons will be added to the list of LIGO’s discoveries.

Thursday, July 13, 2017

Nature magazine publishes comment on quantum gravity phenomenology, demonstrates failure of editorial oversight

I have a headache and
blame Nature magazine for it.
For about 15 years, I have worked on quantum gravity phenomenology, which means I study ways to experimentally test the quantum properties of space and time. Since 2007, my research area has its own conference series, “Experimental Search for Quantum Gravity,” which took place most recently September 2016 in Frankfurt, Germany.

Extrapolating from whom I personally know, I estimate that about 150-200 people currently work in this field. But I have never seen nor heard anything of Chiara Marletto and Vlatko Vedral, who just wrote a comment for Nature magazine complaining that the research area doesn’t exist.

In their comment, titled “Witness gravity’s quantum side in the lab,” Marletto and Vedral call for “a focused meeting bringing together the quantum- and gravity-physics communities, as well as theorists and experimentalists.” Nice.

If they think such meetings are a good idea, I recommend they attend them. There’s no shortage. The above mentioned conference series is only the most regular meeting on quantum gravity phenomenology. Also the Marcel Grossmann Meeting has sessions on the topic. Indeed, I am writing this from a conference here in Trieste, which is about “Probing the spacetime fabric: from concepts to phenomenology.”

Marletto and Vedral point out that it would be great if one could measure gravitational fields in quantum superpositions to demonstrate that gravity is quantized. They go on to lay out their own idea for such experiments, but their interest in the topic apparently didn’t go far enough to either look up the literature or actually put in the numbers.

Yes, it would be great if we could measure the gravitational field of an object in a superposition of, say, two different locations. Problem is, heavy objects – whose gravitational fields are easy to measure – decohere quickly and don’t have quantum properties. On the other hand, objects which are easy to bring into quantum superpositions are too light to measure their gravitational field.

To be clear, the challenge here is to measure the gravitational field created by the objects themselves. It is comparably easy to measure the behavior of quantum objects in the gravitational field of the Earth. That has something to do with quantum and something to do with gravity, but nothing to do with quantum gravity because the gravitational field isn’t quantized.

In their comment, Marletto and Vedral go on to propose an experiment:
“Likewise, one could envisage an experiment that uses two quantum masses. These would need to be massive enough to be detectable, perhaps nanomechanical oscillators or Bose–Einstein condensates (ultracold matter that behaves as a single super-atom with quantum properties). The first mass is set in a superposition of two locations and, through gravitational interaction, generates Schrödinger-cat states on the gravitational field. The second mass (the quantum probe) then witnesses the ‘gravitational cat states’ brought about by the first.”
This is truly remarkable, but not because it’s such a great idea. It’s because Marletto and Vedral believe they’re the first to think about this. Of course they are not.

The idea of using Schrödinger-cat states, has most recently been discussed here. I didn’t write about the paper on this blog because the experimental realization faces giant challenges and I think it won’t work. There is also Anastopolous and Hu’s CQG paper about “Probing a Gravitational Cat State” and a follow-up paper by Derakhshani, which likewise go unmentioned. I’d really like to know how Marletto and Vedral think they can improve on the previous proposals. Letting a graphic designer make a nice illustration to accompany their comment doesn’t really count much in my book.

The currently most promising attempt to probe quantum gravity indeed uses nanomechanical oscillators and comes from the group of Markus Aspelmeyer in Vienna. I previously discussed their work here. This group is about six orders of magnitude away from being able to measure such superpositions. The Nature comment doesn’t mention it either.

The prospects of using Bose-Einstein condensates to probe quantum gravity has been discussed back and forth for two decades, but clear is that this isn’t presently the best option. The reason is simple: Even if you take the largest condensate that has been created to date – something like 10 million atoms – and you calculate the total mass, you are still way below the mass of the nanomechanical oscillators. And that’s leaving aside the difficulty of creating and sustaining the condensate.

There are some other possible gravitational effects for Bose-Einstein condensates which have been investigated, but these come from violations of the equivalence principle, or rather the ambiguity of what the equivalence principle in quantum mechanics means to begin with. That’s a different story though because it’s not about measuring quantum superpositions of the gravitational field.

Besides this, there are other research directions. Paternostro and collaborators, for example, have suggested that a quantized gravitational field can exchange entanglement between objects in a way that a classical field can’t. That too, however, is a measurement which is not presently technologically feasible. A proposal closer to experimental test is that by Belenchia et al, laid out their PRL about “Tests of Quantum Gravity induced non-locality via opto-mechanical quantum oscillators” (which I wrote about here).

Others look for evidence of quantum gravity in the CMB, in gravitational waves, or search for violations of the symmetries that underlie General Relativity. You can find a little summary in my blogpost “How Can we test Quantum Gravity”  or in my Nautilus essay “What Quantum Gravity Needs Is More Experiments.”

Do Marletto and Vedral mention any of this research on quantum gravity phenomenology? No.

So, let’s take stock. Here, we have two scientists who don’t know anything about the topic they write about and who ignore the existing literature. They faintly reinvent an old idea without being aware of the well-known difficulties, without quantifying the prospects of ever measuring it, and without giving proper credits to those who previously wrote about it. And they get published in one of the most prominent scientific journals in existence.

Wow. This takes us to a whole new level of editorial incompetence.

The worst part isn’t even that Nature magazine claims my research area doesn’t exist. No, it’s that I’m a regular reader of the magazine – or at least have been so far – and rely on their editors to keep me informed about what happens in other disciplines. For example with the comments pieces. And let us be clear that these are, for all I know, invited comments and not selected from among unsolicited submissions. So, some editor deliberately chose these authors.

Now, in this rare case when I can judge their content’s quality, I find the Nature editors picked two people who have no idea what’s going on, who chew up 30 years old ideas, and omit relevant citations of timely contributions.

Thus, for me the worst part is that I will henceforth have to suspect Nature’s coverage of other research areas is equally miserable as this.

Really, doing as much as Googling “Quantum Gravity Phenomenology” is more informative than this Nature comment.

Sunday, July 09, 2017

Stephen Hawking’s 75th Birthday Conference: Impressions

I’m back from Cambridge, where I attended the conference “Gravity and Black Holes” in honor of Stephen Hawking’s 75th birthday.

First things first, the image on the conference poster, website, banner, etc is not a psychedelic banana, but gravitational wave emission in a black hole merger. It’s a still from a numerical simulation done by a Cambridge group that you can watch in full on YouTube.



What do gravitational waves have to do with Stephen Hawking? More than you might think.

Stephen Hawking, together with Gary Gibbons, wrote one of the first papers on the analysis of gravitational wave signals. That was in 1971, briefly after gravitational waves were first “discovered” by Joseph Weber. Weber’s detection was never confirmed by other groups. I don’t think anybody knows just what he measured, but whatever it was, it clearly wasn’t gravitational waves. Also Hawking’s – now famous – area theorem stemmed from this interest in gravitational waves, which is why the paper is titled “Gravitational Radiation from Colliding Black Holes.”

Second things second, the conference launched on Sunday with a public symposium, featuring not only Hawking himself but also Brian Cox, Gabriela Gonzalez, and Martin Rees. I didn’t attend because usually nothing of interest happens at these events. I think it was recorded, but haven’t seen the recording online yet – will update if it becomes available.

Gabriela Gonzalez was spokesperson of the LIGO collaboration when the first (real) gravitational wave detection was announced, so you have almost certainly seen her. She also gave a talk at the conference on Tuesday. LIGO’s second run is almost done now, and will finish in August. Then it’s time for the next schedule upgrade. Maximal design sensitivity isn’t expected to be reached until 2020. Above all, in the coming years, we’ll almost certainly see much better statistics and smaller error bars.

The supposed correlations in the LIGO noise were worth a joke by the session’s chairman, and I had the pleasure of talking to another member of the LIGO collaboration who recognized me as the person who wrote that upsetting Forbes piece. I clearly made some new friends there^^. I’d have some more to say about this, but will postpone this to another time.

Back to the conference. Monday began with several talks on inflation, most of which were rather basic overviews, so really not much new to report. Slava Mukhanov delivered a very Russian presentation, complaining about people who complain that inflation isn’t science. Andrei Linde then spoke about attractors in inflation, something I’ve been looking into recently, so this came in handy.

Monday afternoon, we had Jim Hartle speaking about the No-Boundary proposal – he was not at all impressed by Neil Turok et al’s recent criticism – and Raffael Bousso about the ever-tightening links between general relativity and quantum field theory. Raffael’s was the probably most technical talk of the meeting. His strikes me as a research program that will still run in the next century. There’s much to learn and we’ve barely just begun.

On Tuesday, besides the already mentioned LIGO talk, there were a few other talks about numerical general relativity – informative but also somehow unexciting. In the afternoon, Ted Jacobson spoke about fluid analogies for gravity (which I wrote about here), and Jeff Steinhauer reported on his (still somewhat controversial) measurement of entanglement in the Hawking radiation of such a fluid analogy (which I wrote about here.)

Wednesday began with a rather obscure talk about how to shove information through wormholes in AdS/CFT that I am afraid might have been somehow linked to ER=EPR, but I missed the first half so not sure. Gary Gibbons then delivered a spirited account of gravitational memory, though it didn’t become clear to me if it’s of practical relevance.

Next, Andy Strominger spoke about infrared divergences in QED. Hearing him speak, the whole business of using soft gravitons to solve the information loss problem suddenly made a lot of sense! Unfortunately I immediately forgot why it made sense, but I promise to do more reading on that.

Finally, Gary Horowitz spoke about all the things that string theorists know and don’t know about black hole microstates, which I’d sum up with they know less than I thought they do.

Stephen Hawking attended some of the talks, but didn’t say anything, except for a garbled sentence that seems to have played back by accident and stumped Ted Jacobson.

All together, it was a very interesting and fun meeting, and also a good opportunity to have coffee with friends both old and new. Besides food for thought, I also brought back a conference bag, a matching pen, and a sinus infection which I blame on the air conditioning in the lecture hall.

Now I have a short break to assemble my slides for next week’s conference and then I’m off to the airport again.