The maybe first thought experiment came from James Maxwell and is known today as Maxwell’s demon. Maxwell used his thought experiment to find out whether one can beat the second law of thermodynamics and build a perpetual motion machine, from which an infinite amount of energy could be extracted.
Yes, we know that this is not possible, but Maxwell said, suppose you have two boxes of gas, one of high temperature and one of low temperature. If you bring them into contact with each other, the temperatures will reach equilibrium at a common temperature somewhere in the middle. In that process of reaching the equilibrium temperature, the system becomes more mixed up and entropy increases. And while that happens – while the gas mixes up – you can extract energy from the system. It “does work” as physicists say. But once the temperatures have equalized and are the same throughout the gas, you can no longer extract energy from the system. Entropy has become maximal and that’s the end of the story.
Maxwell’s demon now is a little omniscient being that sits at the connection between the two boxes where there is a little door. Each time a fast atom comes from the left, the demon lets it through. But if there’s a fast atom coming from the right, the demon closes the door. This way the number of fast atoms on the one side will increase, which means that the temperature on that side goes up again and the entropy of the whole system goes down.
It seems like thermodynamics is broken, because we all know that entropy cannot decrease, right? So what gives? Well, the demon needs to have information about the motion of the atoms, otherwise it does not know when to open the door. This means, essentially, the demon is itself a reservoir of low entropy. If you combine demon and gas the second law holds and all is well. The interesting thing about Maxwell’s demon is that it tells us entropy is somehow the opposite of information, you can use information to decrease entropy. Indeed, a miniature version of Maxwell’s demon has meanwhile been experimentally realized.
But let us come back to Einstein. Einstein’s best known thought experiment is that he imagined what would happen in an elevator that’s being pulled up. Einstein argued that there is no measurement that you can do inside the elevator to find out whether the elevator is in rest in a gravitational field or is being pulled up with constant acceleration. This became Einstein’s “equivalence principle”, according to which the effects of gravitation in a small region of space-time are the same as the effects of acceleration in the absence of gravity. If you converted this principle into mathematical equations, it becomes the basis of General Relativity.
Einstein also liked to imagine how it would be to chase after photons, which was super-important for him to develop special relativity, and he spent a lot of time thinking about what it really means to measure time and distances.
But the maybe most influential of his thought experiments was one that he came up with to illustrate that quantum mechanics must be wrong. In this thought experiment, he explored one of the most peculiar effects of quantum mechanics: entanglement. He did this together with Boris Podolsky and Nathan Rosen, so today this is known as the Einstein-Podolsky-Rosen or just EPR experiment.
How does it work? Entangled particles have some measureable property, for example spin, that is correlated between particles even though the value for each single particle is not determined as long as the particles were not measured. If you have a pair of particles, you can know for example that if one particle has spin up, then the other one has spin down, or the other way round, but you may still not know which is which. The consequence is that if one of these particles is measured, the state of the other one seems to change – instantaneously.
Einstein, Podolsky and Rosen suggested this experiment because Einstein believed this instantaneous ‘spooky’ action at a distance is nonsense. You see, Einstein had a problem with it because it seems to conflict with the speed of light limit in Special Relativity. We know today that this is not the case, quantum mechanics does not conflict with Special Relativity because no useful information can be sent between entangled particles. But Einstein didn’t know that. Today, the EPR experiment is no longer a thought experiment. It can, and has been done, and we now know beyond doubt that quantum entanglement is real.
A thought experiment that still gives headaches to theoretical physicists today is the black hole information loss paradox. General relativity and quantum field theory are both extremely well established theories, but if you combine them, you find that black holes will evaporate. We cannot measure this for real, because the temperature of the radiation is too low, but it is measureable in principle.
However, if you do the calculation, which was first done by Stephen Hawking, it seems that black hole evaporation is not reversible; it destroys information for good. This however cannot happen in quantum field theory and so we face a logical inconsistency when combining quantum theory with general relativity. This cannot be how nature works, so we must be making a mistake. But which?
There are many proposed solutions to the black hole information loss problem. Most of my colleagues believe that the inconsistency comes from using general relativity in a regime where it should no longer be used and that we need a quantum theory of gravity to resolve the problem. So far, however, physicists have not found a solution, or at least not one they can all agree on.
So, yes, thought experiments are a technique of investigation that physicists have used in the past and continue to use today. But we should not forget that eventually we need real experiments to test our theories.