I wrote my recent post on the “
Unbearable Lightness of Philosophy” to introduce a paper summary, but it got somewhat out of hand. I don’t want to withhold the actual body of my summary though. The paper in question is
Before we start I have to warn you that the paper speaks a lot about
realism and
underdetermination, and I couldn’t figure out what exactly the authors mean with these words. Sure, I looked them up, but that didn’t help because there doesn’t seem to be an agreement on what the words mean. It’s philosophy after all.
Personally, I subscribe to a philosophy I’d like to call agnostic instrumentalism, which means I think science is useful and I don’t care what else you want to say about it – anything from realism to solipsism to Carroll’s “poetic naturalism” is fine by me. In newspeak, I’m a whateverist – now go away and let me science.
The authors of the paper, in contrast, position themselves as follows:
“We will first state our allegiance to scientific realism… We take scientific realism to be the doctrine that most of the statements of the mature scientific theories that we accept are true, or approximately true, whether the statement is about observable or unobservable states of affairs.”
But rather than explaining what this means, the authors next admit that this definition contains “vague words,” and apologize that they “will leave this general defense to more competent philosophers.” Interesting approach. A physics-paper in this style would say: “This is a research article about General Relativity which has something to do with curvature of space and all that. This is just vague words, but we’ll leave a general defense to more competent physicists.”
In any case, it turns out that it doesn’t matter much for the rest of the paper exactly what realism means to the authors – it’s a great paper also for an instrumentalist because it’s long enough so that, rolled up, it’s good to slap flies. The focus on scientific realism seems somewhat superfluous, but I notice that the paper is to appear in “The Routledge Handbook of Scientific Realism” which might explain it.
It also didn’t become clear to me what the authors mean by underdetermination. Vaguely speaking, they seem to mean that a theory is underdetermined if it contains elements unnecessary to explain existing data (which is also what Wikipedia offers by way of definition). But the question what’s necessary to explain data isn’t a simple yes-or-no question – it’s a question that needs a quantitative analysis.
In theory development we always have a tension between simplicity (fewer assumptions) and precision (better fit) because more parameters normally allow for better fits. Hence we use statistical measures to find out in which case a better fit justifies a more complicated model. I don’t know how one can claim that a model is “underdetermined” without such quantitative analysis.
The authors of the paper for the most part avoid the need to quantify underdetermination by using sociological markers, ie they treat models as underdetermined if cosmologists haven’t yet agreed on the model in question. I guess that’s the best they could have done, but it’s not a basis on which one can discuss what will remain underdetermined. The authors for example seem to implicitly believe that evidence for a theory at high energies can only come from processes at such high energies, but that isn’t so – one can also use high precision measurements at low energies (at least in principle). In the end it comes down, again, to quantifying which model is the best fit.
With this advance warning, let me tell you the three main philosophical issues which the authors discuss.
1. Underdetermination of topology.
Einstein’s field equations are local differential equations which describe how energy-densities curve space-time. This means these equations describe how space changes from one place to the next and from one moment to the next, but they do not fix the overall connectivity – the topology – of space-time
*.
A sheet of paper is a simple example. It’s flat and it has no holes. If you roll it up and make a cylinder, the paper is still flat, but now it has a hole. You could find out about this without reference to the embedding space by drawing a circle onto the cylinder and around its perimeter, so that it can’t be contracted to zero length while staying on the cylinder’s surface. This could never happen on a flat sheet. And yet, if you look at any one point of the cylinder and its surrounding, it is indistinguishable from a flat sheet. The flat sheet and the cylinder are locally identical – but they are globally different.
General Relativity thus can’t tell you the topology of space-time. But physicists don’t normally worry much about this because you can parameterize the differences between topologies, compute observables, and then compare the results to data. Topology is, in that, no different than any other assumption of a cosmological model. Cosmologists can, and have, looked for evidence of non-trivial space-time connectivity in the CMB data, but they haven’t found anything that would indicate our universe wraps around itself. At least so far.
In the paper, the authors point out an argument raised by someone else (Manchak) which claims that different topologies can’t be distinguished almost everywhere. I haven’t read the paper in question, but this claim is almost certainly correct. The reason is that while topology is a global property, you can change it on arbitrarily small scales. All you have to do is punch a hole into that sheet of paper, and whoops, it’s got a new topology. Or if you want something without boundaries, then identify two points with each other. Indeed you could sprinkle space-time with arbitrarily many tiny wormholes and in that way create the most abstruse topological properties (and, most likely, lots of causal paradoxa).
The topology of the universe is hence, like the topology of the human body, a matter of resolution. On distances visible to the eye you can count the holes in the human body on the fingers of your hand. On shorter distances though you’re all pores and ion channels, and on subatomic distances you’re pretty much just holes. So, asking what’s the topology of a physical surface only makes sense when one specifies at which distance scale one is probing this (possibly higher-dimensional) surface.
I thus don’t think any physicist will be surprised by the philosophers’ finding that cosmology severely underdetermines global topology. What the paper fails to discuss though is the scale-dependence of that conclusion. Hence, I would like to know: Is it still true that the topology will remain underdetermined on cosmological scales? And to what extent, and under which circumstances, can the short-distance topology have long-distance consequences, as eg suggested by the ER=EPR idea? What effect would this have on the separation of scales in effective field theory?
2. Underdetermination of models of inflation.
The currently most widely accepted model for the universe assumes the existence of a scalar field – the “inflaton” – and a potential for this field – the “inflation potential” – in which the field moves towards a minimum. While the field is getting there, space is exponentially stretched. At the end of inflation, the field’s energy is dumped into the production of particles of the standard model and dark matter.
This mechanism was invented to solve various finetuning problems that cosmology otherwise has, notably that the universe seems to be almost flat (the “flatness problem”), that the cosmic microwave background has the almost-same temperature in all directions except for tiny fluctuations (the “horizon problem”), and that we haven’t seen any funky things like magnetic monopoles or domain walls that tend to be plentiful at the energy scale of grand unification (the “monopole problem”).
Trouble is, there’s loads of inflation potentials that one can cook up, and most of them can’t be distinguished with current data. Moreover, one can invent more than one inflation field, which adds to the variety of models. So, clearly, the inflation models are severely underdetermined.
I’m not really sure why this overabundance of potentials is interesting for philosophers. This isn’t so much philosophy as sociology – that the models are underdetermined is why physicists get them published, and if there was enough data to extract a potential that would be the end of their fun. Whether there will ever be enough data to tell them apart, only time will tell. Some potentials have already been ruled out with incoming data, so I am hopeful.
The questions that I wish philosophers would take on are different ones. To begin with, I’d like to know which of the problems that inflation supposedly solves are actual problems. It only makes sense to complain about finetuning if one has a probability distribution. In this, the finetuning problem in cosmology is distinctly different from the finetuning problems in the standard model, because in cosmology one can plausibly argue there is a probability distribution – it’s that of fluctuations of the quantum fields which seed the initial conditions.
So, I believe that the horizon problem is a well-defined problem, assuming quantum theory remains valid close by the Planck scale. I’m not so sure, however, about the flatness problem and the monopole problem. I don’t see what’s wrong with just assuming the initial value for the curvature is tiny (finetuned), and I don’t know why I should care about monopoles given that we don’t know grand unification is more than a fantasy.
Then, of course, the current data indicates that the inflation potential too must be finetuned which, as Steinhardt has aptly complained, means that inflation doesn’t really solve the problem it was meant to solve. But to make that statement one would have to compare the severity of finetuning, and how does one do that? Can one even make sense of this question? Where are the philosophers if one needs them?
Finally, I have a more general conceptual problem that falls into the category of underdetermination, which is to which extent the achievements of inflation are actually independent of each other. Assume, for example, you have a theory that solves the horizon problem. Under which circumstances does it also solve the flatness problem and gives the right tilt for the spectral index? I suspect that the assumptions for this do not require the full mechanism of inflation with potential and all, and almost certainly not a very specific type of potential. Hence I would like to know what’s the minimal theory that explains the observations, and which assumptions are really necessary.
3. Underdetermination in the multiverse.
Many models for inflation create not only one universe, but infinitely many of them, a whole “multiverse”. In the other universes, fundamental constants – or maybe even the laws of nature themselves – can be different. How do you make predictions in a multiverse? You can’t, really. But you can make statements about probabilities, about how likely it is that we find ourselves in this universe with these particles and not any other.
To make statements about the probability of the occurrence of certain universes in the multiverse one needs a probability distribution or a measure (in the space of all multiverses or their parameters respectively). Such a measure should also take into account anthropic considerations, since there are some universes which are almost certainly inhospitable for life, for example because they don’t allow the formation of large structures.
In their paper, the authors point out that the combination of a universe ensemble and a measure is underdetermined by observations we can make in our universe. It’s underdetermined in the same what that if I give you a bag of marbles and say the most likely pick is red, you can’t tell what’s in the bag.
I think physicists are well aware of this ambiguity, but unfortunately the philosophers don’t address why physicists ignore it. Physicists ignore it because they believe that one day they can deduce the theory that gives rise to the multiverse and the measure on it. To make their point, the philosophers would have had to demonstrate that this deduction is impossible. I think it is, but I’d rather leave the case to philosophers.
For the agnostic instrumentalist like me a different question is more interesting, which is whether one stands to gain anything from taking a “shut-up-and-calculate” attitude to the multiverse, even if one distinctly dislikes it. Quantum mechanics too uses unobservable entities, and that formalism –however much you detest it – works very well. It really adds something new, regardless of whether or not you believe the wave-function is “real” in some sense. For what the multiverse is concerned, I am not sure about this. So why bother with it?
Consider the best-case multiverse outcome: Physicists will eventually find a measure on some multiverse according to which the parameters we have measured are the most likely ones. Hurray. Now forget about the interpretation and think of this calculation as a black box: You put in math one side and out comes a set of “best” parameters the other side. You could always reformulate such a calculation as an optimization problem which allows one to calculate the correct parameters. So, independent of the thorny question of what’s real, what do I gain from thinking about measures on the multiverse rather than just looking for an optimization procedure straight away?
Yes, there are cases – like bubble collisions in eternal inflation – that would serve as independent confirmation for the existence of another universe. But no evidence for that has been found. So for me the question remains: under which circumstances is doing calculations in the multiverse an advantage rather than unnecessary mathematical baggage?
I think this paper makes a good example for the difference between philosophers’ and physicists’ interests which I wrote about in my previous post. It was a good (if somewhat long) read and it gave me something to think, though I will need some time to recover from all the -isms.
* Note added: The word connectivity in this sentence is a loose stand-in for those who do not know the technical term “topology.” It does
not refer to the technical term “connectivity.”