- “Hello Sabine, I've seen a couple of articles lately on emergent gravity. I'm not a scientist so I would love to read one of your easy-to-understand blog entries on the subject.
Regards,
Michael Tucker
Wichita, KS”
Dear Michael,
Emergent gravity has been in the news lately because of a new paper by Erik Verlinde. I’ll tell you some more about that paper in an upcoming post, but answering your question makes for a good preparation.
The “gravity” in emergent gravity refers to the theory of general relativity in the regimes where we have tested it. That means Einstein’s field equations and curved space-time and all that.
The “emergent” means that gravity isn’t fundamental, but instead can be derived from some underlying structure. That’s what we mean by “emergent” in theoretical physics: If theory B can be derived from theory A but not the other way round, then B emerges from A.
You might be more familiar with seeing the word “emergent” applied to objects or properties of objects, which is another way physicists use the expression. Sound waves in the theory of gases, for example, emerge from molecular interactions. Van-der Waals forces emerge from quantum electrodynamics. Protons emerge from quantum chromodynamics. And so on.
Everything that isn’t in the standard model or general relativity is known to be emergent already. And since I know that it annoys so many of you, let me point out again that, yes, to our current best knowledge this includes cells and brains and free will. Fundamentally, you’re all just a lot of interacting particles. Get over it.
General relativity and the standard model are the currently the most fundamental descriptions of nature which we have. For the theoretical physicist, the interesting question is then whether these two theories are also emergent from something else. Most physicists in the field think the answer is yes. And any theory in which general relativity – in the tested regimes – is derived from a more fundamental theory, is a case of “emergent gravity.”
That might not sound like such a new idea and indeed it isn’t. In string theory, for example, gravity – like everything else – “emerges” from, well, strings. There are a lot of other attempts to explain gravitons – the quanta of the gravitational interaction – as not-fundamental “quasi-particles” which emerge, much like sound-waves, because space-time is made of something else. An example for this is the model pursued by Xiao-Gang Wen and collaborators in which space-time, and matter, and really everything is made of qbits. Including cells and brains and so on.
Xiao-Gang’s model stands out because it can also include the gauge-groups of the standard model, though last time I looked chirality was an issue. But there are many other models of emergent gravity which focus on just getting general relativity. Lorenzo Sindoni has written a very useful, though quite technical, review of such models.
Almost all such attempts to have gravity emerge from some underlying “stuff” run into trouble because the “stuff” defines a preferred frame which shouldn’t exist in general relativity. They violate Lorentz-invariance, which we know observationally is fulfilled to very high precision.
An exception to this is entropic gravity, an idea pioneered by Ted Jacobson 20 years ago. Jacobson pointed out that there are very close relations between gravity and thermodynamics, and this research direction has since gained a lot of momentum.
The relation between general relativity and thermodynamics in itself doesn’t make gravity emergent, it’s merely a reformulation of gravity. But thermodynamics itself is an emergent theory – it describes the behavior of very large numbers of some kind of small things. Hence, that gravity looks a lot like thermodynamics makes one think that maybe it’s emergent from the interaction of a lot of small things.
What are the small things? Well, the currently best guess is that they’re strings. That’s because string theory is (at least to my knowledge) the only way to avoid the problems with Lorentz-invariance violation in emergent gravity scenarios. (Gravity is not emergent in Loop Quantum Gravity – its quantized version is directly encoded in the variables.)
But as long as you’re not looking at very short distances, it might not matter much exactly what gravity emerges from. Like thermodynamics was developed before it could be derived from statistical mechanics, we might be able to develop emergent gravity before we know what to derive it from.
This is only interesting, however, if the gravity that “emerges” is only approximately identical to general relativity, and differs from it in specific ways. For example, if gravity is emergent, then the cosmological constant and/or dark matter might emerge with it, whereas in our current formulation, these have to be added as sources for general relativity.
So, in summary “emergent gravity” is a rather vague umbrella term that encompasses a large number of models in which gravity isn’t a fundamental interaction. The specific theory of emergent gravity which has recently made headlines is better known as “entropic gravity” and is, I would say, the currently most promising candidate for emergent gravity. It’s believed to be related to, or maybe even be part of string theory, but if there are such links they aren’t presently well understood.
Thanks for an interesting question!
Aside: Sorry about the issue with the comments. I turned on G+ comments, thinking they'd be displayed in addition, but that instead removed all the other comments. So I've reset this to the previous version, though I find it very cumbersome to have to follow four different comment threads for the same post.