The standard interpretation at the time was that pioneered by the Copenhagen group – notably Bohr, Heisenberg, and Schrödinger – and is today usually referred to as the Copenhagen Interpretation. It works as follows. In quantum mechanics, everything is described by a wave-function, usually denoted Psi. Psi is a function of time. One can calculate how it changes in time with a differential equation known as the Schrödinger equation. When one makes a measurement, one calculates probabilities for the measurement outcomes from the wave-function. The equation by help of which one calculates these probabilities is known as Born’s Rule. I explained in an earlier video how this works.

The peculiar thing about the Copenhagen Interpretation is now that it does not tell you what happens before you make a measurement. If you have a particle described by a wave-function that says the particle is in two places at once, then the Copenhagen Interpretation merely says, at the moment you measure the particle it’s either here or there, with a certain probability that follows from the wave-function. But how the particle transitioned from being in two places at once to suddenly being in only one place, the Copenhagen Interpretation does not tell you. Those who advocate this interpretation would say that’s a question you are not supposed to ask because, by definition, what happens before the measurement is not measureable.

Bohm was not the only one dismayed that the Copenhagen people would answer a question by saying you’re not supposed to ask it. Albert Einstein didn’t like it either. If you remember, Einstein famously said “God does not throw dice”, by which he meant he does not believe that the probabilistic nature of quantum mechanics is fundamental. In contrast to what is often claimed, Einstein did not think quantum mechanics was wrong. He just thought it is probabilistic the same way classical physics is probabilistic, namely, that our inability to predict the outcome of a measurement in quantum mechanics comes from our lack of information. Einstein thought, in a nutshell, there must be some more information, some information that is missing in quantum mechanics, which is why it appears random.

This missing information in quantum mechanics is usually called “hidden variables”. If you knew the hidden variables, you could predict the outcome of a measurement. But the variables are “hidden”, so you can only calculate the probability of getting a particular outcome.

Back to Bohm. In 1952, he published two papers in which he laid out his idea for how to make sense of quantum mechanics. According to Bohm, the wave-function in quantum mechanics is not what we actually observe. Instead, what we observe are particles, which are guided by the wave-function. One can arrive at this interpretation in a few lines of calculation. I will not go through this in detail because it’s probably not so interesting for most of you. Let me just say you take the wave-function apart into an absolute value and a phase, insert it into the Schrödinger equation, and then separate the resulting equation into its real and imaginary part. That’s pretty much it.

The result is that in Bohmian mechanics the Schrödinger equation falls apart into two equations. One describes the conservation of probability and determines what the guiding field does. The other determines the position of the particle, and it depends on the guiding field. This second equation is usually called the “guiding equation.” So this is how Bohmian mechanics works. You have particles, and they are guided by a field which in return depends on the particle.

To use Bohm’s theory, you then need one further assumption, one that tells what the probability is for the particle to be at a certain place in the guiding field. This adds another equation, usually called the “quantum equilibrium hypothesis”. It is basically equivalent to Born’s rule and says that the probability for finding the particle in a particular place in the guiding field is given by the absolute square of the wave-function at that place. Taken together, these equations – the conservation of probability, the guiding equation, and the quantum equilibrium hypothesis – give the exact same predictions as quantum mechanics. The important difference is that in Bohmian mechanics, the particle is really always in only one place, which is not the case in quantum mechanics.

As they say, a picture speaks a thousand words, so let me just show you how this looks like for the double slit experiment. These thin black curves you see here are the possible ways that the particle could go from the double slit to the screen where it is measured by following the guiding field. Just which way the particle goes is determined by the place it started from. The randomness in the observed outcome is simply due to not knowing exactly where the particle came from.

What is it good for? The great thing about Bohmian mechanics is that it explains what happens in a quantum measurement. Bohmian mechanics says that the reason we can only make probabilistic predictions in quantum mechanics is just that we did not exactly know where the particle initially was. If we measure it, we find out where it is. Nothing mysterious about this. Bohm’s theory, therefore, says that probabilities in quantum mechanics are of the same type as in classical mechanics. The reason we can only predict probabilities for outcomes is because we are missing information. Bohmian mechanics is a hidden variables theory, and the hidden variables are the positions of those particles.

So, that’s the big benefit of Bohmian mechanics. I should add that while Bohm was working on his papers, it was brought to his attention that a very similar idea had previously been put forward in 1927 by De Broglie. This is why, in the literature, the theory is often more accurately referred to as “De Broglie Bohm”. But de Broglie’s proposal did, at the time, not attract much attention. So how did physicists react to Bohm’s proposal in fifty-two. Not very kindly. Niels Bohr called it “very foolish”. Leon Rosenfeld called it “very ingenious, but basically wrong”. Oppenheimer put it down as “juvenile deviationism”. And Einstein, too, was not convinced. He called it “a physical fairy-tale for children” and “not very hopeful.”

Why the criticism? One of the big disadvantages of Bohmian mechanics, that Einstein in particular disliked, is that it is even more non-local than quantum mechanics already is. That’s because the guiding field depends on all the particles you want to measure. This means, if you have a system of entangled particles, then the guiding equation says the velocity of one particle depends on the velocity of the other particles, regardless of how far away they are from each other.

That’s a problem because we know that quantum mechanics is strictly speaking only an approximation. The correct theory is really a more complicated version of quantum mechanics, known as quantum field theory. Quantum field theory is the type of theory that we use for the standard model of particle physics. It’s what people at CERN use to make predictions for their experiments. And in quantum field theory, locality and the speed of light limit, are super-important. They are built very deeply into the math.

The problem is now that since Bohmian mechanics is not local, it has turned out to be very difficult to make a quantum field theory out of it. Some have made attempts, but currently there is simply no Pilot Wave alternative for the Standard Model of Particle Physics. And for many physicists, me included, this is a game stopper. It means the Bohmian approach cannot reproduce the achievements of the Copenhagen Interpretation.

Bohmian mechanics has another odd feature that seems to have perplexed Albert Einstein and John Bell in particular. It’s that, depending on the exact initial position of the particle, the guiding field tells the particle to go either one way or another. But the guiding field has a lot of valleys where particles could be going. So what happens with the empty valleys if you make a measurement? In principle, these empty valleys continue to exist. David Deutsch has claimed this means “pilot-wave theories are parallel-universes theories in a state of chronic denial.”

Bohm himself, interestingly enough, seems to have changed his attitude towards his own theory. He originally thought it would in some cases give predictions different from quantum mechanics. I only learned this recently from a Biography of Bohm written by David Peat. Peat writes

“Bohm told Einstein… his only hope was that conventional quantum theory would not apply to very rapid processes. Experiments done in a rapid succession would, he hoped, show divergences from the conventional theory and give clues as to what lies at a deeper level.”

However, Bohm had pretty much the whole community against him. After a particularly hefty criticism by Heisenberg, Bohm changed course and claimed that his theory made the same predictions as quantum mechanics. But it did not help. After this, they just complained that the theory did not make new predictions. And in the end, they just ignored him.

So is Bohmian mechanics in the end just a way of making you feel better about the predictions of quantum mechanics? Depends on whether or not you think the “quantum equilibrium hypothesis” is always fulfilled. If it is always fulfilled, the two theories give the same predictions. But if the equilibrium is actually a state the system must first settle in, as the name certainly suggests, then there might be cases when this assumption is not fulfilled. And then, Bohmian mechanics is really a different theory. Physicists still debate today whether such deviations from quantum equilibrium can happen, and whether we can therefore find out that Bohm was right."" This video was sponsored by Brilliant which is a website that offers interactive courses on a large variety of topics in science and mathematics. I always try to show you some of the key equations, but if you really want to understand how to use them, then Brilliant is a great starting point. For this video, for example, I would recommend their courses on differential equations, linear algebra, and quantum objects. To support this channel and learn more about Brilliant, go to Brilliant.org/Sabine and sign up for free. The first 200 subscribers using this link will get 20 percent off the annual premium subscription.

You can join the chats on this week’s topic using the Converseful app in the bottom right corner:

Dear Sabine, please consider this a first request for you to consider AlgKoopman in such a way as this. Perhaps enough people might repeat that request that you might, but the larger reason is that its mathematics somewhat furthers the superdeterminism project, so you could make your own request.

ReplyDeleteSo far, nobody has said that it's “very foolish”, “very ingenious, but basically wrong”, “juvenile deviationism”, “a physical fairy-tale for children”, nor “not very hopeful.” On the other hand, Annals of Physics has only just selected it as a highlighted article, so nobody as serious as the people who said such scathing things about Bohm's work have yet weighed in. From correspondence, however, it seems that some physicists are starting to think carefully about what aspects of AlgKoopman they will use in their own work (not all aspects, but some!) Mathematically, AlgKoopman's motivation comes largely from a field theoretic background so that there is a moderately clear path to Lorentz invariance already in the literature in Physica Scripta 2019, and AlgKoopman more-or-less reconciles Bohr and Einstein by showing that it is natural to extend classical mechanics to include “hidden” measurements that derive from the Poisson bracket structure to make CM equivalent to quantum mechanics, instead of the usual idea that “hidden” variables must be added to QM. In contrast to deBB approaches, which have usually been associated with the Hamilton-Jacobi formalism for CM, AlgKoopman is, unsurprisingly, associated with Koopman's Hilbert space formalism for CM, which is a mathematically more natural starting point for characterizing differences between CM and QM.

It seems to be the case that only some fraction even of physicists understand how AlgKoopman changes the game, but I'm very curious who amongst well-known physicists will make the first attempt to show how that is or, in demolishing it, will clarify aspects I have not the cleverness to understand, which I hope will be constructive.

I have a friend who, on seeing the above, promptly said "how is algkoopman not a physical fairy tale for children peter !!", so please consider that particular entry half-removed from the list above. He's going through the rest on Messenger as I write this now, so AlgKoopman is well roasted.

DeleteIt is not clear to me that quantum field theory (QFT) is more fundamental than plain vanilla QM. Quantum mechanics is represented in space, usually with |r⟩ or ⟨r| so the state |ψ⟩ or ⟨ψ| is contracted with this so ψ(r) = ⟨r|ψ⟩. This is not difficult in nonrelativistic QM, but with spacetime things become complicated. In QFT the wave function is determined by the action of a field operator on a Fock space of states. The Wightman conditions that field operators on a spatial surface commute, or locality, is then imposed. The merging of spacetime with QM in this special relativistic setting always struck me as having bolts and seams visibly apparent.

ReplyDeleteOf course, we know this cannot be fundamental with gravitation. A system falling into a black hole can be observed close to the horizon, say be a near horizon observer, and its quantum states appearing outside as Hawking radiation. The locality of a field in some point of space is not generally true. QM with its full nonlocality of fields and waves is rearing its head.

The Bohm QM when applied to the Klein-Gordon equation has for the Hamilton-Jacobi equation a solution that is faster than light. There is a correction term to the classical relativistic mechanics, related to the quantum potential, that gives this funny result. This appears to hint as the more general nonlocality of Bohm QM, but it is troubling if you want to do much with this. Interacting field theory is impossible to work. There is the guy at Rutgers, Sheldon, who insists on Bohm and some years back announced with great fanfare they were able to do what Feynman did with QED in 1949.

Lawrence, can you point me toward any papers fleshing out these views?

Delete“QM with its full nonlocality of fields and waves is rearing its head.”

Delete“The Bohm QM when applied to the Klein-Gordon equation has for the Hamilton-Jacobi equation a solution that is faster than light.”

With the mathematical formalism of both Copenhagen QM and the de Broglie-Bohm version of QM implying superluminal connectivity (but not information transfer), perhaps this is telling us something profound about the inner workings of these descriptions of nature at the very smallest scales. The early Universe went from a diameter of one nanometer (10^-9 m) at 10^-36 seconds after the initiation of the Big Bang to 10.6 light years at between 10^-33 or 10^-32 seconds after the Big Bang due to the hypothesized inflaton field. Perhaps, (though I personally don’t have a clue), this capacity for space to expand at phenomenal rates is somehow connected to the non-locality aspect of QM, and its variants, that is built into their math. One thought that comes to mind are extra-dimensional theories like Randall-Sundrum 1 and 2, where it might be imagined that things like instantaneous (or perhaps near instantaneous?) spin correlation of photons measured, for example, 143 kilometers apart in the Canary Islands by Anton Zeilinger’s group is happening through hypothesized extra dimensions of space.

Granted there is no evidence of extra dimensions in any physics experiment, either high energy at CERN, or low energy table top experiments such as those conducted by Eric Adelberger’s group at the University of Washington. But as a long-time UFO buff I’ve often pondered about reports where these (alleged) physical objects will shrink down to a point and just blink out like the image on an old CRT television when the set is turned off.

@ Tam Hunt: The following below by Susskind make this argument. The first of these is Black Hole Complementarity vs Locality, and the second is his old Holography article of 1994. The simple argument I give though is the physics in a nutshell. Quantum black holes challenge ideas of quantum field locality.

Deletehttps://arxiv.org/abs/hep-th/9506138

https://arxiv.org/abs/hep-th/9409089

@ David Schroeder: The Bohm QM can be cast into a path integral. I did this over 10 years ago and never really did anything with it. The real part of the Schrodinger equation gives a Hamilton-Jacobi equation with a so called quantum potential. Now one can take a symplectic transformation or cananical change of variables. This apparent faster than light part changes as well. Then what I did was to take a summation over all possible symplectic transformations and with some algebra I derived a form of path integral. The theory is based on unitary-symplectic Lie algebras, or USp(n), so the integration measure is mod diffoemorphisms based on Usp(n). This also means this faster than light part really plays no actual physics.

DeleteBohm's QM is just QM in a different form. Bohm himself came around to admitting this. To do things with it though is very clumsy. I think it is useful for quantum chaos due to its close affiliation with standard classical mechanics.

Dear Sabine,

ReplyDeleteAs you know there have been many improvements in Bohm's original work e.g. by Hailey and more recently by Sutherland. In your opinion have they been able to overcome problems with original Bohm model?

I have written this transcript after consultation with several people who work in the field and to my best knowledge it summarizes the current state of research. Ie, the answer to your question is no.

DeleteWho are those “people?”

DeleteThanks. I agree. I never liked the idea of a separate guided wave any way. This leads to conflict with relativity which it seems that Hailey or Sutherland have not resolved. Also I understand one can criticize Bohmian mechanics from both angles. If it agrees with expts. then why go through all this tortuous non linear mathematics when simple linear Quantum mechanics works so well. If it does not then it should be discarded anyway. It seems that it is not just interpretation which one can tolerate as a philosophical interpretation. It actually modifies QM. Do you agree?

DeleteDear Kashyap,

DeleteI seem to have missed the nonlinearity you talk about. Where do you find a nonlinearity in the maths for the Bohmian mechanics?

Sabine has not used the word nonlinear (or non linear) or chaos, etc. Note her summary:

>> "Let me just say you take the wave-function apart into an absolute value and a phase, insert it into the Schrödinger equation, and then separate the resulting equation into its real and imaginary part. That’s pretty much it."

This procedure would be unable to generate nonlinear differential equations if the original Schrodinger equation is linear---the way it actually is, in the mainstream QM as also in the Bohmian mechanics.

Best,

--Ajit

Dear Ajit,

DeleteNon linearity of Bohmian mechanics is rather well known. Just google! e.g.

Bohmian Mechanics (Stanford Encyclopedia of Philosophy)

plato.stanford.edu › entries › qm-bohm

Oct 26, 2001 — David Bohm (1952) rediscovered de Broglie's pilot-wave theory in 1952. Thus our deterministic Bohmian model yields the usual quantum predictions for the ... equation is somewhat complicated, and highly nonlinear.

Kashyap Vasavada

> The correct theory is really a more complicated version of quantum mechanics, known as quantum field theory. [...] The problem is now that since Bohmian mechanics is not local, it has turned out to be very difficult to make a quantum field theory out of it.

ReplyDeleteI've always suspected that this is because QFT and Copenhagen are simply kicking the can down the road, and that John Bell was right to state that non-locality is

theunsolved problem of integrating QM and GR.Sabine,

ReplyDeleteMaybe you can help me with this question. The argument against Bohmian mechanics is that it is non-local, and QFT requires locality. But didn't Bell prove that the universe is non-local (for most physicists at least; I realize you have an alternative explanation for his results)?

Scott,

DeleteFirst, you cannot use a mathematical theorem to prove how the universe is. What Bell proved is that theories of a certain type obey an inequality. Experiment shows that this inequality is violated. It follows that one of the assumptions of Bell's theorem must be violated.

A violation of one of these assumptions is qua definition what people in quantum foundations call "non-locality". It is an extremely misleading use of the word and has nothing to do with that particle physicists call "non-locality" which refers to non-local interactions.

These two different types of non-locality have caused so much confusion I really think we should stop referring to quantum mechanics as "non-local". Some have suggested to instead use the term "non-separable" which makes much more sense indeed.

In any case, Bohmian mechanics violates Bell's inequality and is thus non-local in Bell's sense. This is fine and not the problem I was talking about. The problem is that the ontology of Bohmian mechanics is non-local in the QFT sense (as I explained in the video). This is not necessarily a problem, but certainly one of the reasons why it's been hard to make a QFT out of it. The other problem is Lorenz-invariance (which I refer to as the "speed of light limit).

well...there’s a topic for a future video....

DeleteThis is a great future topic. I thought about commenting on this here, but work, time limits and so forth have gotten in the way. It is the standard narrative that quantum nonlocality and field locality are completely independent. There are though I think subtle connections and QM and QFT nonlocality and locality have a connection. For most QFT and particle physics work it is just not important. Bring gravitation into the picture and it becomes very important and is one reason quantum gravitation, at least as canonical quantized and even string theory, has not worked well.

DeleteDr. Hossenfelder,

ReplyDeleteI have always been partial to de Broglie - Bohm so thank you very much for this presentation. I have in the past mentioned my work history, so needless for me to say there were two things that stuck with me more than the rest of the information, "Don't ask questions" and "Hidden Variables." It seems to me that physics is all about asking questions and if things are hidden from us how can we really expect to correctly and accurately move forward? And, if we do not know or understand what is "hidden" how can we ask good questions? Doesn't this alone tell us that we still have so much more to learn and maybe we should be slowing down a bit so we can find answers to the questions we can't ask, and find some of the things that are hidden.

And, you touched on a topic that I have been researching for a few weeks now because I have just a couple of basic questions that I cannot find an answer to, the double slit experiment. Say that I have a source that fires 1000 particles one at a time at the double slits. Do all 1000 particles pass through one of the slits to the back screen, or are some of the particles blocked by the space between the slits or on either side of the slits? If some are blocked is there general percentage of blockage that is constant even with changes in speed and/or wavelength?

Maybe this question will lead to a hidden variable? Please forgive me for this one, I could not pass it up.

As far as I can tell, Bohr never actually said "don't ask questions". What he said was more like that “there can be no question of any unambiguous interpretation of the symbols of quantum mechanics other than that embodied in the well-known rules which allow to predict the results to be obtained by a given experimental arrangement.”

DeleteThe issue I have with Bohmian mechanics is that when you're familiar with Everett's relative state formulation, it feels like Bohmian mechanics just adds a bit of formalism that doesn't change the model's explanatory power (this is of course historically backwards, and Bohm should get more credit for paving the way towards the MWI). Even worse, it posits the existence of a multiverse of p-zombies.

ReplyDeleteThe Bohmian model is basically a universal pachinko machine - there's a universal wavefunction in the universal Hilbert space, and in that space there's also a single dot representing all of the particles in the world, its path determined by the wavefunction and the starting position. The wavefunction evolves deterministically with no influence from the dot. One may then conceptualize a complete description of it in spacetime, which contains information on every path the dot may take for every possible starting position, including the complete information on every observer in each of those timelines.

One must ask then - what do you need that dot for? The one-sided causality between it and the wavefunction means the former can't be more physically real than the latter. Why should we say that we live in a universe controlled like a marionette by a vastly larger object, rather than in that object?

Bohm's theory is convinient for quantum cosmology, since it avoids the problem of the system and the observer which are necessary in the Copenhagen interpretation so that the Copenhagen interpretation cannot be applied to the whole universe.

ReplyDeleteAs far as the Bohm´s formulation of QFT, the difficulty is that one has to work in the Schrodinger representation, so that one has to use the functionals of fields, and the mathematics of field functionals is not sufficiently developed in order to do the calculations like in QFT.

For me, the problem with the Bohm's theory is that particles in a stationary bound state do not move, which does not sit well with the intuitive idea that particles should always move (think of an electron orbiting a proton).

Bohmian mechanics - a personal journey.

ReplyDeleteInitially fascinated by BM, I soon concluded that it's plain wrong. That is, if individual particles have definite positions, then individual runs of an experiment must conserve energy-momentum (e-m). Now, individual particles alone clearly don't do that, so a conserved quantity must involve also the wave. This is the situation in other systems involving (point) particles interacting with fields, e.g. classical electrodynamics (CED) and GR (at least this is what I thought...). But in those two examples, there exists a symbiotic relation between the particle and the field: the particle sources the field while the field guides the particle, whereas in BM there is only the latter, master-slave relation.

So I set out to complement the guiding equation with a `sourcing equation' so a Lagrangian can be written-->conservation laws. This innocuous looking task turned out a lot harder than I expected, and seemed to work only in a fully relativistic theory (the result is the "central ECD system" in arxiv.org/pdf/0902.4606.pdf).

There was, however, a price to be paid for this completion of BM. Now, that each particle comes with its own wave, there is no longer a single `master wave' encoding the statistical results of an experiment (even for a single particle; with multiple particles the situation was worse). But then, a single ensemble system is now a particle-wave pair, and there doesn't seem to be any natural measure on such a complex set, so why not QM I reasoned.

It took me a while to grasp it, but lying in front of me was CED of interacting charges - free of its infamous self-force problem, which has never been properly solved before (see confession of Jackson 3rd ed. p.745). And when I asked: what is the simplest statistical description of such a consistent CED, the answer was straightforwardly QM (arxiv.org/abs/1804.00509), just as anticipated.

I have since been exploring that grand-child of Bohm which I named Extended Charge Dynamics, and recently showed that the missing matter problem may very well be just another, hitherto ignored facet of CED doi.org/10.3390/sym12091534

In that long journey, done mostly outside academia, I had engaged with no less than four communities, which seemed rather oblivious to each other. And it was unbelievably frustrating to get them to take a more panoramic view of physics, reveling, to my judgment, the root cause for the long stagnation in the foundations of physics: a wrong turn at the beginning of the twentieth century with regard to the self-force problem of CED.

Regardless of the validity of Bohm’s interpretation of QM, it does provide a connection to modern nonlinear dynamics, aka, chaos theory. As you point out, the actual trajectory followed by the electron in the double slit experiment is sensitively dependent on its initial position prior to passing through the slit(s). It’s an interesting way to think about what happens.

ReplyDeleteThe Wheeler-DeWitt equation

ReplyDeleteG_{ijkl}δ^2Ψ[g]/δg_{ij}δg_{kl} + R^(3)Ψ[g]= 0

for the wave functional in a polar form Ψ[g] = Ae^{-S[g]} will result in a minisuperspace version of the quantum potential. It has never been clear to me this does much for understanding quantum gravity. Maybe with my idea of building a path integral something could emerge. However, the path integral I derived was no different from standard path integrals anyway.

Isn't there also a rather more philosophical problem with Bohm's theory? Its guiding wave affects particles but is not itself affected by particles. Action without reaction is not something the rest of physics allows.

ReplyDeleteThe Base for the Ultimate Theory of Everything (TOE) is the entangled multiverse:

ReplyDeleteCramer's TI is the same as CP ( Charge Parity) symmetric Multiverse entanglement. (clocks are running only backwards over there)

TI is: Transactional Interpretation of John Cramer.

Libet's measurement results (RPI and RPII) are the measurement proof example of TI

Bohm's theory is convinient for quantum cosmology, since it avoids the problem of the system and the observer which are necessary in the Copenhagen interpretation. Hence the Copenhagen interpretation cannot be applied to the whole universe while the Bohm interpretation can be applied.

ReplyDeleteAs far as the Bohm´s formulation of QFT, the difficulty is that one has to work in the Schrodinger representation, so that one has to use the functionals of fields, and the mathematics of field functionals is not sufficiently developed in order to do the calculations like in QFT.

For me, the problem with the Bohm's theory is that particles in a stationary bound state do not move, which does not sit well with the intuitive idea that particles should always move (think of an electron orbiting a proton).

I’m surprised that you claim that in QM a particle can be in two places at once. You say:

ReplyDelete* “particle described by a wave-function that says the particle is in two places at once”

* “in Bohmian mechanics, the particle is really always in only one place, which is not the case in quantum mechanics”

But QM doesn’t say that at all. All QM says is that the wave-function can be non-zero in many places. QM never says that the wavefunction *is* the particle, nor that the particle exists in multiple places. That would be an interpretation, not part of QM itself.

I am using the standard way of verbalizing the concept of a wave-function. If you think you can do it better, you are very welcome to set up your own YouTube channel.

DeleteHmm, I think it’s more standard to talk of the wave function as a “calculational tool” or “the state, from which we can calculate probabilities.”

DeleteAnyway, I didn’t mean to reproach. Given your interest in foundational issues (such as your Superdeterminism paper, which I liked), I just thought you’d phrase it differently, is all.

I do have a video channel, but think I cannot link (spam filter?). See the site physicsisnotweird (dot com): the first three videos are on foundational questions, future dependence, and the block universe. (I made them before papers by you and Wharton, so the terminology differs.)

Nonlocality is monism.

ReplyDeletePhase -

ReplyDeleteWhat if the particle actually always IS there, but, either, it's polarity fluctuates, making the equipment either not attuned or not able to measure it ; or it is 'out of phase' and simply not observable without learning how to calibrate instruments to detect wave functions in different phases?(In Sci-Fi, 'phase shifting', lol. But, obviously, there are real examples of this work being done.)

Then, let's assume all particles are in this constant state of polar reversals, perhaps randomly and affectually, as dominoes, or perhaps according to some as yet undiscovered cosmological governance. A mass body moving through the field would presumably be charged - or +, and guided by the interactive forces with the particles. In this case it would follow that the polarity shifting is indeed governed by a mathematical principle, and a geometrically symmetrical one, as would be evidenced by observing inertia in a vacuum. Further to that I would boldly predict this symmetry would be 'perfection', symmetrical on an infinite number of planes, maybe a sphere.

Also, I've been thinking, since the recent news of an additional state of matter being identified. Why do we make these, what are imho, assumptive classifications in the beginning? I have to start working with the assumption that there is only matter, it's 'state' is irrelevant. The factors used in equations, i.e. electron speed, atomic field size, melt point, etc., are particle specific and labelling their 'state' is meaningless, except as an English word. We should look at matter as being in a single state, a manifestation of these, particle properties. So, instead of solid, liquid, gas, you have high speed, 'free of force effect particles' on one end of the spectrum, and motionless,'fully bound by force' on the other. ... Idk, but, why would heat weaken atomic binding force? Where's the math for that? Why do they speed up, is heat a barrage of wave functions? .... If heat is concentrated wave function, then, perhaps, this is similarly the case with measuring instruments, but rather than the heat-activity quotient, it is a wave-polarization relationship that affects the particle being observed.

".. the loud sound it seemed to fade, came back like a slow voice on a wave of phase." - Starman, David Bowie

(...the radio faded out, and we heard another voice. It came on a different wave of phase) ... Bowie credited dreams for telling him what to write. The song also says he is sitting there, but doesn't say hi. It doesn't specify, but I assume he can't be seen cz he is out of phase. d:o}

Peace, physics nerds. Y'all can thank me later. .....with money;)

One thing I found interesting reading your article about Bohmian mechanics is a connection I noticed to what another physicist said regarding point particles (unfortunately I can't remember where I read it or who said it). He wrote that he regarded point particles as "a disturbance in the field" rather than being continual existing points of energy. That seemed to fit nicely with Bohm's guiding field explanation.

ReplyDeleteOriginally the idea of a pilot wave was raised by de Broglie. It was discussed and refuted at the Solveig conference in 1927. John Bell has investigated that discussion and says (in his book “Speakable and Unspeakable in QM”) that this decision was not the result of physical arguments but the result of the personality of Heisenberg; who used the occasion to slam de Broglie.

ReplyDeleteIt is surprising that de Broglie and Bohm obviously did not investigate the internal structure of elementary particles and particularly did not look for a *cause* of the pilot wave. At Bohm’s time there was already some knowledge about it which he could have used. When de Broglie predicted the interference of electrons he must have assumed an internal oscillation in the particle. Later Dirac and Schrödinger found that this internal oscillation is going on at the speed of light (which was earlier already assumed by Lorentz). David Hestenes later took it as the origin of the spin.

The electron, to take this example, has internal charges, which on the one hand means the electrical charge which we know of the electron. And in addition charges which keep the internal structure bound. As these charges orbit, they cause an alternating external field which in motion causes waves. So the particle itself is the cause of the surrounding field and the position of the particle in the field is always well defined. No requirement here for non-locality.

This field causes an interference pattern at the double slit which guides the particle precisely to the detector. The individual path of the particle in a single case is then not only defined by its initial position but also by its actual phase when it arrives at the slits.

Such particle model explains in addition a lot of properties like mass (very precisely), constancy of spin, frequency to energy relation, and Pauli principle, which are stated but not explained by Copenhagen QM. So, to be able to explain these phenomena (besides others) is a great benefit of this approach following the pilot wave idea, in comparison to the Copenhagen QM.

The problem of entanglement, however, is not solved by such model. But it is as well not solved by the Copenhagen QM, where it is merely stated to exist.

That's the way to go. For the entanglement it seems to be nececcary to find out also external structure, not only internal - how internal and external together conserves antipodes over spatiality. Temporal variation is ruled by speed constant c.

DeleteOf course the next conclusion is related to the definitions of naming selectable things: parity; where come left and right, how are ruled opposite directions and opposite charges. To me it revealed that the larger structure have to be the key - in coherent quanta group only antipodes make difference.

Sabine:

ReplyDelete"Bohm had pretty much the whole community against him. ... And in the end, they just ignored him."

Max Planck, Werner Heisenberg, Niels Bohr, Louis de Broglie, Paul Dirac, and Erwin Schrödinger were all members of the Pontifical Academy of Sciences, the scientific academy of the Vatican City. Latest member is physics Nobel prize winner Reinhard Genzel for his studies on black holes. Co-winner Roger Penrose has been a guest of the Specola Vaticana as featured speaker on a workshop on Singularities and Black Holes, held to celebrate the work of Georges Lemaître, the inventor of the Big Bang.

The reason for Bohm's ex-communication most likely can be found in Vatican City.

@Gerd: you should suggest this to Dan Brown for the plot of his next novel ;) Maybe you can even get some royalties.

Delete@opamanfred:

Delete“Science could not exist without faith! Science needs faith that with it we can find truth, and that this truth is worth finding” commented Guy Consolmagno, Director of the Vatican Observatory, on the award of the Nobel Prize in Physics 2020 (vaticannews).

Fact is that science needs no faith at all.

If you now think of conspiracy theories ("Dan Brown") you should read something about the German "Reichskonkordat", negiotiated soon after the Enabling Act of 1933 between the Vatican and the German Nazis, which is still in force today.

We humans are our own entangled reflections from far away, in the mirror symmetric Multiverse. The Base for the Ultimate Theory of Everything (TOE) is the reflective entangled multiverse supported by: John Cramer's TI is the same as CP (Charge Parity) symmetric multiverse entanglement.

ReplyDeleteThe Theory of Everything needs a Multiverse ! even Bohm single photon dual slit experiment.

ReplyDeleteWe humans, even photons are entangled reflections in the mirror multiverse.!

The Base for the Ultimate Theory of Everything (TOE) is the entangled multiverse:

1: Cramer's TI is the same as CP ( Charge Parity) symmetric Multiverse entanglement. (clocks are running only backwards over there)

TI is: Transactional Interpretation of John Cramer.

2: Libet's measurement results (RPI and RPII) are the measurement proof example of TI.

3: Bohmian Double Slit Interpretation by Dual Entangled Universes, and the Benjamin Libet experiment.

so Bohmian mechanics is like what you do to Maxwell's equations when you derive the physical optics formulation (before you start applying approximations to it) ?

ReplyDeleteThank you Dr.Sabine,

ReplyDeleteI was one of the requesters of this topic.

One question about this sentence:

ReplyDelete"Bohmian mechanics says that the reason we can only make probabilistic predictions in quantum mechanics is just that we did not exactly know where the particle initially was."

Is this "exactly" here still subject to the indetermination principle? In other words, was Bohm assuming that also the indetermination threshold could be bypassed until enough precision aobout initial condition could be reached?

Or, viceversa, he assumed that it is possible to make a non probabilistic prediction based on more accurate initial conditions but still in compliance with Heisenberg principle?

Heisenberg's Uncertainty Principle says that we cannot determine the exact position of the particle. But in Bohmian mechanics, the particle actually has an exact position which it is not possible to determine, and the fact you can't determine it is the source of the probabilities inherent in quantum mechanics.

DeleteHow would particles be "guided by a field which in return depends on the particle"? And how could someone go about proving Bohm's interpretation?

ReplyDeleteIsn't Bohm claiming that quantum mechanics is more or less same as Newtonian mechanics? Is so, why does the water wave analogy fail? If not, what's different?

What if instead our notions of 'wave' and 'particle' are fundamentally wrong?

Nonlin.org wrote: "What if instead our notions of 'wave' and 'particle' are fundamentally wrong?"

DeleteRight. We haven't arrived at a clear picture of what "quantum objects" are. De Broglie's beautiful idea that they have both wave and particle properties has not really come to fruition in Bohmian mechanics. What I especially dislike about the dBB theory is that interference patterns formed by electrons and photons actually require separate explanations! (Photons do not have a position operator.) It's like a twentieth century apartment fitted with rococo furniture.

Nonlin.org:

ReplyDelete"Isn't Bohm claiming that quantum mechanics is more or less same as Newtonian mechanics? Is so, why does the water wave analogy fail? If not, what's different?"

Water waves require a medium which would correspond to the disproved luminiferous aether.

For Newtonian mechanics/quantum mechanics rather think of a mobile gun (speed v) driving on a circular path which fires an infinite number of bullets ("particles" with speed c) at the same time in all directions ("wave"). How fast (v/c) must the gun drive to hit at least one bullet from the side?

Lost in math? Problems like that can be easily solved using Euler's complex e-function, where you can arbitrarily mix Cartesian coordinates with cylindrical coordinates (see my last post in Quantum mechanics #5). If you define t=0 as the time when be bullets are fired, you can immediately write down the position of the bullets as

Deleteb(t)=R + ivt + cte^(iφ) for all angles φ, where one angle represents one individual bullet, and the position of the gun as

g(t)=R*e^(iωt), ω=v/R,

which are vector equations.

The results are solutions to b(t)=g(t).

It is no secret to solve equations like that. The biggest mystery however is, why such simple basic equations do not appear in quantum mechanics.

Gerd Termathe: I get the impression you have missed the whole point of the "Lost In Math" title.

DeleteThe issue isn't that ANY of the math is difficult.

The issue is that physicists are seeking "beauty" in their math and trying to drive the science by aesthetic considerations that have no scientific justification.

Then you show you too are "Lost in Math": You say, ironically,

"The biggest mystery however is, why such simple basic equations do not appear in quantum mechanics."Why is that a

mystery?By whatscientificjustification should quantum mechanics equations besimple?Simplicity is just an aesthetic quality, when scientifically all that matters is whether the equations capture the observed behavior, in the wild or in controlled experiments.It seems to me you've missed the whole point.