The gravitational pull of a black hole depends on its mass. At a fixed distance from the center, it isn’t any stronger or weaker than that of a star with the same mass. The difference is that, since a black hole doesn’t have a surface, the gravitational pull can continue to increase as you approach the center.

The gravitational pull itself isn’t the problem, the problem is the change in the pull, the tidal force. It will stretch any extended object in a process with technical name “spaghettification.” That’s what will eventually kill you. Whether this happens before or after you cross the horizon depends, again, on the mass of the black hole. The larger the mass, the smaller the space-time curvature at the horizon, and the smaller the tidal force.Leaving aside lots of hot gas and swirling particles, you have good chances to survive crossing the horizon of a supermassive black hole, like that in the center of our galaxy. You would, however, probably be torn apart before crossing the horizon of a solar-mass black hole.

It takes you a finite time to reach the horizon of a black hole. For an outside observer however, you seem to be moving slower and slower and will never quite reach the black hole, due to the (technically infinitely large) gravitational redshift. If you take into account that black holes evaporate, it doesn’t quite take forever, and your friends will eventually see you vanishing. It might just take a few hundred billion years.

In an article that recently appeared on “Quick And Dirty Tips” (featured by SciAm), Everyday Einstein Sabrina Stierwalt explains:

“As you approach a black hole, you do not notice a change in time as you experience it, but from an outsider’s perspective, time appears to slow down and eventually crawl to a stop for you [...] So who is right? This discrepancy, and whose reality is ultimately correct, is a highly contested area of current physics research.”No, it isn’t. The two observers have different descriptions of the process of falling into a black hole because they both use different time coordinates. There is no contradiction between the conclusions they draw. The outside observer’s story is an infinitely stretched version of the infalling observer’s story, covering only the part before horizon crossing. Nobody contests this.

I suspect this confusion was caused by the idea of black hole complementarity. Which is indeed a highly contest area of current physics research. According to black hole complementarity the information that falls into a black hole both goes in and comes out. This is in contradiction with quantum mechanics which forbids making exact copies of a state. The idea of black hole complementarity is that nobody can ever make a measurement to document the forbidden copying and hence, it isn’t a real inconsistency. Making such measurements is typically impossible because the infalling observer only has a limited amount of time before hitting the singularity.

Black hole complementarity is actually a pretty philosophical idea.

Now, the black hole firewall issue points out that black hole complementarity is inconsistent. Even if you can’t measure that a copy has been made, pushing the infalling information in the outgoing radiation changes the vacuum state in the horizon vicinity to a state which is no longer empty: that’s the firewall.

Be that as it may, even in black hole complementarity the infalling observer still falls in, and crosses the horizon at a finite time.

The real question that drives much current research is how the information comes out of the black hole before it has completely evaporated. It’s a topic which has been discussed for more than 40 years now, and there is little sign that theorists will agree on a solution. And why would they? Leaving aside fluid analogies, there is no experimental evidence for what happens with black hole information, and there is hence no reason for theorists to converge on any one option.

The theory assessment in this research area is purely non-empirical, to use an expression by philosopher Richard Dawid. It’s why I think if we ever want to see progress on the foundations of physics we have to think very carefully about the non-empirical criteria that we use.

Anyway, the lesson here is: Everyday Einstein’s

*Quick and Dirty Tips*is not a recommended travel guide for black holes.