- Correlated "noise" in LIGO gravitational wave signals: an implication of Conformal Cyclic Cosmology
Roger Penrose
arXiv:1707.04169 [gr-qc]
Roger Penrose made his name with the Penrose-Hawking theorems and twistor theory. He is also well-known for writing books with very many pages, most recently “Fashion, Faith, and Fantasy in the New Physics of the Universe.”
![]() |
| One man’s noise is another man’s signal. |
The LIGO experiment consists of two interferometers in the USA, separated by about 3,000 km. A gravitational wave signal should pass through both detectors with a delay determined by the time it takes the gravitational wave to sweep from one US-coast to the other. This delay is typically of the order of 10ms, but its exact value depends on where the waves came from.
The correlation between the two LIGO detectors is one of the most important criteria used by the collaboration to tell noise from signal. The noise itself, however, isn’t entirely uncorrelated. Some sources of the correlations are known, but some are not. This is not unusual – understanding the detector is as much part of a new experiment as is the measurement itself. The LIGO collaboration, needless to say, thinks everything is under control and the correlations are adequately taken care of in their signal analysis.
A Danish group of researchers begs to differ. They recently published a criticism on the arXiv in which they complain that after subtracting the signal of the first gravitational wave event, correlations remain at the same time-delay as the signal. That clearly shouldn’t happen. First and foremost it would demonstrate a sloppy signal extraction by the LIGO collaboration.
A reply to the Danes’ criticism by Ian Harry from the LIGO collaboration quickly appeared on Sean Carroll’s blog. Ian pointed out some supposed mistakes in the Danish group’s paper. Turns out though, the mistake was on his site. Once corrected, Harry’s analysis reproduces the correlations which shouldn’t be there. Bummer.
Ian Harry did not respond to my requests for comment. Neither did Alessandra Buonanno from the LIGO collaboration, who was also acknowledged by the Danish group. David Shoemaker, the current LIGO spokesperson, let me know he has “full confidence” in the results, and also, the collaboration is working on a reply, which might however take several months to appear. In other words, go away, there’s nothing to see here.
But while we wait for the LIGO response, speculations abound what might cause the supposed correlation. Penrose beat everyone to it with an explanation, even Craig Hogan, who has run his own experiment looking for correlated noise in interferometers, and who I was counting on.
Penrose’s cyclic cosmology works by gluing the big bang together with what we usually think of as the end of the universe – an infinite accelerated expansion into nothingness. Penrose conjectures that both phases – the beginning and the end – are conformally invariant, which means they possess a symmetry under a stretching of distance scales. Then he identifies the end of the universe with the beginning of a new one, creating a cycle that repeats indefinitely. In his theory, what we think of as inflation – the accelerated expansion in the early universe – becomes the final phase of acceleration in the cycle preceding our own.
Problem is, the universe as we presently see it is not conformally invariant. What screws up conformal invariance is that particles have masses, and these masses also set a scale. Hence, Penrose has to assume that eventually all particle masses fade away so that conformal invariance is restored.
There’s another problem. Since Penrose’s conformal cyclic cosmology has no inflation it also lacks a mechanism to create temperature fluctuations in the cosmic microwave background (CMB). Luckily, however, the theory also gives rise to a new scalar particle that couples only gravitationally. Penrose named it “erebon” after the ancient Greek God of Darkness, Erebos, that gives rise to new phenomenology.
![]() |
| Erebos, the God of Darkness, according to YouTube. |
Since erebons are created at the beginning of each cycle and decay away through it, they also create a gravitational wave background. Penrose then argues that a gravitational wave signal from a binary black hole merger – like the ones LIGO has observed – should be accompanied by noise-like signals from erebons that decayed at the same time in the same galaxy. Just that this noise-like contribution would be correlated with the same time-difference as the merger signal.
In his paper, Penrose does not analyze the details of his proposal. He merely writes:
“Clearly the proposal that I am putting forward here makes many testable predictions, and it should not be hard to disprove it if it is wrong.”In my impression, this is a sketchy idea and I doubt it will work. I don’t have a major problem with inventing some particle to make up dark matter, but I have a hard time seeing how the decay of a Planck-mass particle can give rise to a signal comparable in strength to a black hole merger (or why several of them would add up exactly for a larger signal).
Even taking this at face value, the decay signals wouldn’t only come from one galaxy but from all galaxies, so the noise should be correlated all over and at pretty much all time-scales – not just at the 12ms as the Danish group has claimed. Worst of all, the dominant part of the signal would come from our own galaxy and why haven’t we seen this already?
In summary, one can’t blame Penrose for being fashionable. But I don’t think that erebons will be added to the list of LIGO’s discoveries.


















