It is possible that in the data yet to come some new particle eventually shows up. But particle physicists are nervous. It’s not looking good – besides a few anomalies that are not statistically significant, there is no evidence for anything out of the normal. And if the LHC finds nothing new, there is no reason to think the next larger collider will. In which case, why build one?
That the LHC finds the Higgs and nothing else was dubbed the “nightmare scenario” for a reason. For 30 years, particle physicists have told us that the LHC should find something besides that, something exciting: a particle for dark matter, additional dimensions of space, or maybe a new type of symmetry. Something that would prove that the standard model is not all there is. But this didn’t happen.
All those predictions for new physics were based on arguments from naturalness. I explained in my book that naturalness arguments are not mathematically sound and one shouldn’t have trusted them.
The problem particle physicists now have is that naturalness was the only reason to think that there should be new physics at the LHC. That’s why they are getting nervous. Without naturalness, there is no argument for new physics at energies even higher than that of the LHC. (Not until 15 orders of magnitude higher, which is when the quantum structure of spacetime should become noticeable. But energies so large will remain inaccessible for the foreseeable future.)
How have particle physicists reacted to the situation? Largely by pretending nothing happened.
One half continues to hope that something will show up in the data, eventually. Maybe naturalness is just more complicated than we thought. The other half pre-emptively fabricates arguments for why a next larger collider should see new particles. And a few just haven’t noticed they walked past the edge of the cliff. A recent report about Beyond the Standard Model Physics at the LHC, for example, still iterates that “naturalness [is] the main motivation to expect new physics.”
Regardless of their coping strategy, a lot of particle physicists probably now wish they had never made those predictions. Therefore I think it’s a great time to look at who said what. References below.
Some lingo ahead: “eV” stands for electron-Volt and is a measure of energy. Particle colliders are classified by the energy that they can test. Higher energy means that the collisions resolve smaller structures. The LHC will reach up to 14 Tera electron Volt (TeV). The “electroweak scale” or “electroweak energy” is typically said to be around the mass of the Z-boson, which is about 100 Giga-electron Volts (GeV), ie a factor 100 below what the LHC reaches.
Also note that even though the LHC reaches energies up to 14 TeV, it collides protons, and those are not elementary particles but composites of quarks and gluons. The total collision energy is therefore distributed over the constituent particles, meaning that constraints on the masses of new particles are below the collision energy. How good the constraints are depends on the expected number of interactions and the amount of data collected. The current constraints are typically at some TeV and will increase as more data is analyzed.
With that ahead, let us start in 1987 with Barbieri and Giudice:
“The implementation of this “naturalness” criterion, gives rise to a physical upper bound on superparticle masses in the TeV range.”In 1994, Anderson and Castano write:
“[In] the most natural scenarios, many sparticles, for example, charginos, squarks, and gluinos, lie within the physics reach of either LEP II or the Tevatron”and
“supersymmetry cannot provide a complete explanation of weak scale stability, if squarks and gluinos have masses beyond the physics reach of the LHC.”LEP was the Large Electron Positron collider. LEP1 and LEP2 refers to the two runs of the experiment.
In 1995, Dimopoulous and Giudice tell us similarly:
“[If] minimal low-energy supersymmetry describes the world with no more than 10% fine tuning, then LEP2 has great chances to discover it.”In 1997, Erich Poppitz writes:
“Within the next 10 years—with the advent of the Large Hadron Collider—we will have the answer to the question: “Is supersymmetry relevant for physics at the electroweak scale?””On to 1998, when Louis, Brunner, and Huber tell us the same thing:
“These models do provide a solution to the naturalness problem as long as the supersymmetric partners have masses not much bigger than 1 TeV.”It was supposed to be an easy discovery, as Frank Paige wrote in 1998:
“Discovering gluinos and squarks in the expected mass range [...] seems straightforward, since the rates are large and the signals are easy to separate from Standard Model backgrounds.”Giudice and Rattazzi in 1998 emphasize that naturalness is why they believe in physics beyond the standard model:
“The naturalness (or hierarchy) problem, is considered to be the most serious theoretical argument against the validity of the Standard Model (SM) of elementary particle interactions beyond the TeV energy scale. In this respect, it can be viewed as the ultimate motivation for pushing the experimental research to higher energies.”They go on to praise the beauty of supersymmetry: “An elegant solution to the naturalness problem is provided by supersymmetry...”
In 1999, Alessandro Strumia, interestingly enough, concludes that the LEP results are really bad news for supersymmetry:
“the negative results of the recent searches for supersymmetric particles pose a naturalness problem to all ‘conventional’ supersymmetric models.”In his paper, he stresses repeatedly that his conclusion applies only to certain supersymmetric models. Which is of course correct. The beauty of supersymmetry is that it’s so adaptive it evades all constraints.
Most particle physicists were utterly undeterred by the negative LEP results. They just moved their predictions to the next larger collider, the TeVatron and then the LHC.
In 2000, Feng, Matchev, and Moroi write:
“This has reinforced a widespread optimism that the next round of collider experiments at the Tevatron, LHC or the NLC are guaranteed to discover all superpartners, if they exists.”(NLC stands for Next Linear Collider, which was a proposal in early 2000s that has since been dropped.) They also iterate that supersymmetry should be easy to find at the LHC:
“In contrast to the sfermions, gauginos and higgsinos cannot be very heavy in this scenario. For example … gauginos will be produced in large numbers at the LHC, and will be discovered in typical scenarios.”In 2004, Stuart Raby tries to say that naturalness arguments already are in trouble:
“Simple ‘naturalness’ arguments would lead one to believe that SUSY should have been observed already.”But of course that’s just reason to consider not-so-simple naturalness arguments.
In the same year, Fabiola Gianotti bangs the drum for the LHC (emphasis mine):
“The above [naturalness] arguments open the door to new and more fundamental physics. There are today several candidate scenarios for physics beyond the Standard Model, including Supersymmetry (SUSY), Technicolour and theories with Extra-dimensions. All of them predict new particles in the TeV region, as needed to stabilize the Higgs mass. We note that there is no other scale in particle physics today as compelling as the TeV scale, which strongly motivates a machine like the LHC able to explore directly and in detail this energy range.”She praises supersymmetry as “very attractive” and also tells us that the discovery should be easy and fast:
“SUSY discovery at the LHC could be relatively easy and fast… Squark and gluino masses of 1 TeV are accessible after only one month of data taking… The ultimate mass reach is up to ∼ 3 TeV for squarks and gluinos. Therefore, if nothing is found at the LHC, TeV-scale Supersymmetry will most likely be ruled out, because of the arguments related to stabilizing the Higgs mass mentioned above.”In 2005, Arkani-Hamed and Savas Dimopolous have the same tale to tell:
“[Ever] since the mid 1970’s, there has been a widely held expectation that the SM must be incomplete already at the ∼ TeV scale. The reason is the principle of naturalness… Solving the naturalness problem has provided the biggest impetus to constructing theories of physics beyond the Standard Model...”Same thing with Feng and Wilczek in 2005:
“The standard model of particle physics is fine-tuned… This blemish has been a prime motivation for proposing supersymmetric extensions to the standard model. In models with low-energy supersymmetry, naturalness can be restored by having superpartners with approximately weak-scale masses.”Here is John Donoghue in 2007:
“[The] argument against finetuning becomes a powerful motivator for new physics at the scale of 1 TeV. The Large Hadron Collider has been designed to find this new physics.”Michael Dine who, also in 2007, writes:
“The Large Hadron Collider will either make a spectacular discovery or rule out supersymmetry entirely.”And Howard Baer in 2009:
“quadratic divergences associated with the scalar sector require new physics at or around the electroweak scale.”The same story, that new physics needs to appear at around a TeV, has been repeated in countless talks and seminars. A few examples. Here is Peter Krieger in 2008:
Michelangelo Mangano:
Joseph Lykken:
I could go on, but I hope this suffices to document that pretty much everyone
-
(a) agreed that the LHC should see new physics besides the Higgs, and
(b) they all had the same reason, namely naturalness.
In summary: Since the naturalness-based predictions did not pan out, we have no reason to think that the remaining LHC run or an even larger particle collider would see any new physics that is not already explained by the standard model of particle physics. A larger collider would be able to measure more precisely the properties of already known particles, but that is arguably not a terribly exciting exercise. It will be a tough sell for a machine that comes at $10 billion and up. Therefore, it may very well be that the LHC will remain the largest particle collider in human history.
Bonus: A reader submits this gem from David Gross and Ed Witten in the Wall Street Journal, anno 1996:
“There is a high probability that supersymmetry, if it plays the role physicists suspect, will be confirmed in the next decade. The existing accelerators that have a chance of doing so are the proton collider at the Department of Energy’s Fermi Lab in Batavia, Ill., and the electron collider at the European Center for Nuclear Research (CERN) in Geneva. Last year’s final run at Fermi Lab, during which the top quark was discovered, gave tantalizing hints of supersymmetry.”