Brian Cox and Jeff Forshaw
Da Capo Press (March 28, 2017)
(UK Edition, Allen Lane (22 Sept. 2016))
I was meant to love this book.
In “Universal” Cox and Forshaw take on astrophysics and cosmology, but rather than using the well-trodden historic path, they offer do-it-yourself instructions.
The first chapters of the book start with every-day observations and simple calculations, by help of which the reader can estimate eg the radius of Earth and its mass, or – if you let a backyard telescope with a 300mm lens and equatorial mount count as every-day items – the distance to other planets in the solar system.
Then, the authors move on to distances beyond the solar system. With that, self-made observations understandably fade out, but are replaced with publicly available data. Cox and Forshaw continue to explain the “cosmic distance ladder,” variable stars, supernovae, redshift, solar emission spectra, Hubble’s law, the Herzsprung-Russell diagram.
Set apart from the main text, the book has “boxes” (actually pages printed white on black) with details of the example calculations and the science behind them. The first half of the book reads quickly and fluidly and reminds me in style of school textbooks: They make an effort to illuminate the logic of scientific reasoning, with some historical asides, and concrete numbers. Along the way, Cox and Forshaw emphasize that the great power of science lies in the consistency of its explanations, and they highlight the necessity of taking into account uncertainty both in the data and in the theories.
The only thing I found wanting in the first half of the book is that they use the speed of light without explaining why it’s constant or where to get it from, even though that too could have been done with every-day items. But then maybe that’s explained in their first book (which I haven’t read).
For me, the fascinating aspect of astrophysics and cosmology is that it connects the physics of the very small scales with that of the very large scales, and allows us to extrapolate both into the distant past and future of our universe. Even though I’m familiar with the research, it still amazes me just how much information about the universe we have been able to extract from the data in the last two decades.
So, yes, I was meant to love this book. I would have been an easy catch.
Then the book continues to explain the dark matter hypothesis as a settled fact, without so much as mentioning any shortcomings of LambdaCDM, and not a single word on modified gravity. The Bullet Cluster is, once again, used as a shut-up argument – a gross misrepresentation of the actual situation, which I previously complained about here.
Inflation gets the same treatment: It’s presented as if it’s a generally accepted model, with no discussion given to the problem of under-determination, or whether inflation actually solves problems that need a solution (or solves the problems period).
To round things off, the authors close the final chapter with some words on eternal inflation and bubble universes, making a vague reference to string theory (because that’s also got something to do with multiverses you see), and then they suggest this might mean we live in a computer simulation:
“Today, the cosmologists responsible for those simulations are hampered by insufficient computing power, which means that they can only produce a small number of simulations, each with different values for a few key parameters, like the amount of dark matter and the nature of the primordial perturbations delivered at the end of inflation. But imagine that there are super-cosmologists who know the String Theory that describes the inflationary Multiverse. Imagine that they run a simulation in their mighty computers – would the simulated creatures living within one of the simulated bubble universes be able to tell that they were in a simulation of cosmic proportions?”Wow. After all the talk about how important it is to keep track of uncertainty in scientific reasoning, this idea is thrown at the reader with little more than a sentence which mentions that, btw, “evidence for inflation” is “not yet absolutely compelling” and there is “no firm evidence for the validity of String Theory or the Multiverse.” But, hey, maybe we live in a computer simulation, how cool is that?
Worse than demonstrating slippery logic, their careless portrayal of speculative hypotheses as almost settled is dumb. Most of the readers who buy the book will have heard of modified gravity as dark matter’s competitor, and will know the controversies around inflation, string theory, and the multiverse: It’s been all over the popular science news for several years. That Cox and Forshaw don’t give space to discussing the pros and cons in a manner that at least pretends to be objective will merely convince the scientifically-minded reader that the authors can’t be trusted.
The last time I thought of Brian Cox – before receiving the review copy of this book – it was because a colleague confided to me that his wife thinks Brian is sexy. I managed to maneuver around the obviously implied question, but I’ll answer this one straight: The book is distinctly unsexy. It’s not worthy of a scientist.
I might have been meant to love the book, but I ended up disappointed about what science communication has become.
[Disclaimer: Free review copy.]