|
The little prince |
Today, extrasolar planets, or exoplanets for short, are all over the news. Hundreds are known, and they are cataloged in
The Extrasolar Planets Encyclopaedia, accessible for everyone who is interested. Some of these extrasolar planets orbit a star in what is believed to be a habitable zone, fertile ground for the evolution of life. Planetary systems, much like ours, have turned out to be much more common results of stellar formation than had been expected.
But the scientific road to this discovery has been bumpy.
Once one knows that stars on the night sky are suns like our own, it doesn't take a big leap of imagination to think that they might be accompanied by planets. Observational evidence for exoplanets was looked for already in the 19th century, but the field had a bad start.
Beginning in the 1950s, several candidates for exoplanets made it into the popular press, yet they turned out to be data flukes. At that time, the experimental method used relied on detecting minuscule changes in the motion of the star caused by a heavy planet of Jupiter type.
If you recall the two-body problem from 1st semester: It's not that one body orbits the other, but they both orbit around their common center-of-mass, just that, if one body is much heavier than the other, it might almost look like the lighter one is orbiting the heavier one. But if a sufficiently heavy planet orbits a star, one might in principle find out by watching the star very closely because it wobbles around the center-of-mass. In the 50s, watching the star closely meant watching its distance to other stellar objects. The precision which could be achieved this way simply wasn't sufficient to reliably tell the presence of a planet.
In the early 80s, Gordon Walker and his postdoc Bruce Campbell from British Columbia, Canada, pioneered a new technique that improved the possible precision by which the motion of the star could be tracked by two orders of magnitude. Their new technique relied on measuring the star's absorption lines, whose frequency depends on the motion of the star relative to us because of the Doppler effect.
To make that method work, Walker and Campbell had to find a way to precisely compare spectral images taken at different times so they'd know how much the spectrum had shifted. They found an ingenious solution to that: They would used the, very regular and well-known, molecular absorption lines of hydrogen fluoride gas. The comb-like absorption lines of hydrogen fluoride served as a ruler relative to which they could measure the star's spectrum, allowing them to detect even smallest changes. Then, together with astronomer Stephenson Yang, they started looking at candidate stars which might be accompanied by Jupiter-like planets.
To detect the motion of the star due to the planet, they would have to record the system for several completed orbits. Our planet Jupiter needs about 12 years to orbit the sun, so they were in for a long-term project. Unfortunately, they had a hard time finding support for their research.
In his recollection “The First High-Precision Radial Velocity Search for Extra-Solar Planets” (
arXiv:0812.3169), Gordon Walker recounts that it was difficult to get time for their project at observatories: “Since extra-solar planets were expected to resemble Jupiter in both mass and orbit, we were awarded only three or four two-night observing runs each year.” And though it is difficult to understand today, back then many of Walker's astronomer colleagues thought the search for exoplanets a waste of time. Walker writes:
“It is quite hard nowadays to realise the atmosphere of skepticism and indifference in the 1980s to proposed searches for extra-solar planets. Some people felt that such an undertaking was not even a legitimate part of astronomy. It was against such a background that we began our precise radial velocity survey of certain bright solar-type stars in 1980 at the Canada France Hawaii 3.6-m Telescope.”
After years of data taking, they had identified several promising candidates, but were too cautious to claim a discovery. At the 1987 meeting of the American Astronomical Society in Vancouver, Campbell announced their preliminary results. The press reported happily yet another discovery of an exoplanet, but the astronomers regarded even Walker and Campbell's cautious interpretation of the data with large skepticism. In his article
“Lost world: How Canada missed its moment of glory,” Jacob Berkowitz describes the reaction of Walker and Campbell's colleagues:
“[Campbell]'s professional colleagues weren't as impressed [as the press]. One astronomer told The New York Times he wouldn't call anything a planet until he could walk on it. No one even attempted to confirm the results.”
Walker's gifted postdoc Bruce Campbell suffered most from the slow-going project that lacked appreciation and had difficulties getting continuing funding. In 1991, after more than a decade of data taking, they still had no discovery to show up with. Campbell meanwhile had reached age 42, and was still sitting on a position that was untenured, was not even tenure-track. Campbell's frustration built up to the point where he quit his job. When he left, he erased all the analyzed data in his university account. Luckily, his (both tenured) collaborators Walker and Yang could recover the data. Campbell made a radical career change and became a personal tax consultant.
But in late 1991, Walker and Yang were finally almost certain to have found sufficient evidence of an exoplanet around the star gamma Cephei, whose spectrum showed a consistent 2.5 year wobble. In a fateful coincidence, when Walker just thought they had pinned it down, one of his colleagues, Jaymie Matthews, came by his office, looked at the data and pointed out that the wobble in the data coincided with what appeared to be periods of heightened activity on the star's surface. Walker looked at the data with new eyes and, mistakenly, believed that they had been watching all the time an oscillating star rather than a periodic motion of the star's position.
Briefly after that,
in early 1992, Nature reported the first confirmed discovery of an exoplanet by Wolszczan and Frail, based in the USA. Yet, the planet they found orbits a millisecond pulsar (probably a neutron star), so for many the discovery doesn't score highly because the star's collapse would have wiped out all life in that planetary system long ago.
In 1995 then, astronomers Mayor and Queloz of the University of Geneva announced the first definitive observational evidence for an exoplanet orbiting a normal star. The planet has an orbital period of a few days only, no decade long recording was necessary.
It wasn't until 2003 that the planet that Walker, Campbell and Yang had been after was finally confirmed.
There are three messages to take away from this story.
First, Berkowitz in his article points out that Canada failed to have faith in Walker and Campbell's research at the time when just a little more support would have made them first to discover an exoplanet. Funding for long-term projects is difficult to obtain and it's even more difficult if the project doesn't produce results before it's really done. That can be an unfortunate hurdle for discoveries.
Second, it is in hindsight difficult to understand why Walker and Campbell's colleagues were so unsupportive. Nobody ever really doubted that exoplanets exist, and with the precision of measurements in astronomy steadily increasing, sooner or later somebody would be able to find statistically significant evidence. It seems that a few initial false claims had a very unfortunate backlash that did exceed the reasonable.
Third, in the forest of complaints about lacking funding for basic research, especially for long-term projects, every tree is a personal tragedy.